• 제목/요약/키워드: Penalty factor

검색결과 85건 처리시간 0.026초

위상각 기준모선의 이동에 의한 Slack 모선을 포함한 모든 발전기의 Penalty 계수 계산방법 (Generator Penalty Factor Calculation including Slack Bus by Reference Angle Re-Specification)

  • 이상중;김건중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.49-51
    • /
    • 2000
  • ln this paper, a method by which penalty factors of all generators including slack bus can be directly derived is presented. With a simple re-assignment of angle reference bus to a bus where no generation exists, penalty factors for slack bus is obtained without any physical assumption. While previous Jacobian-based techniques for generator penalty factor calculation have been derived with basis upon reference bus, proposed method are not dependent on reference bus and calculated penalty factors can be substituted directly into the general ELD equation to compute the economic dispatch. Equations for system loss sensitivity, penalty factors and optimal generation allocation are solved simultaneously in normal power flow computation.

  • PDF

균질재료와 벌칙인자를 이용한 위상 최적설계 (Topology Optimization Using Homogenized Material and Penalty Factor)

  • 임오강;이진식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 1998
  • Optimization problems may be devided into geometry optimization problems and topology optimization problems. In this paper, a method using tile equivalent material properties prediction techniques of a particulate-reinforced composites is proposed for the topology optimization. This method makes use of penalty factor in order that regions with intermediate value of design variables can be penalized. The computational results being obtained from PLBA algorithm of some values of penalty factor are presented.

  • PDF

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구 (A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost)

  • 이병하;김정훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권1호
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

Proposal of the Penalty Factor Equations Considering Weld Strength Over-Match

  • Kim, Jong-Sung;Jeong, Jae-Wook;Lee, Kang-Yong
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.838-849
    • /
    • 2017
  • This paper proposes penalty factor equations that take into consideration the weld strength over-match given in the classified form similar to the revised equations presented in the Code Case N-779 via cyclic elastic-plastic finite element analysis. It was found that the $K_e$ analysis data reflecting elastic follow-up can be consolidated by normalizing the primary-plus-secondary stress intensity ranges excluding the nonlinear thermal stress intensity component, $S_n$ to over-match degree of yield strength, $M_F$. For the effect of over-match on $K_n{\times}K_{\nu}$, dispersion of the $K_n{\times}K_{\nu}$ analysis data can be sharply reduced by dividing total stress intensity range, excluding local thermal stresses, $S_{p-lt}$ by $M_F$. Finally, the proposed equations were applied to the weld between the safe end and the piping of a pressurizer surge nozzle in pressurized water reactors in order to calculate a cumulative usage factor. The cumulative usage factor was then compared with those derived by the previous $K_e$ factor equations. The result shows that application of the proposed equations can significantly reduce conservatism of fatigue assessment using the previous $K_e$ factor equations.

비공비 혼합냉매 R-410A를 적용한 납작한 알루미늄 마이크로 멀티 튜브에서의 마찰손실에 관한 연구 (A study on the friction head loss in flat aluminum micro multi tubes with nonazeotropic refrigerant mixtures R-410A)

  • 이정근;민경호
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.37-43
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer friction loss headby using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat enhancement factor and pressure drop penalty factor. 1) The friction head loss showed an increase as the vapor quality and mass flux increased. In case of saturation temperature, it shows an increase as it gets lower. These factors are the reason occurring as the lower the saturation temperature is, the higher the density of refrigerant vapor gets. The influence of heat flux is similar as the dryness is low, but as it gets higher, it lowers in heat flux, and as the high temperature of high heat flux, it is a factor that occurs as the density gets lower. 2) RMS error of the in case of friction head loss, it showed to be predicted as 0.45~0.67 by Chisholm, Friedel, Lockhart and Martinelli. 3) As forfriction head loss penalty factor, the smaller the aspect ratio is, the larger the penalty factor gets, and as for the effect of micro-fin, the penalty factor increased because it decreases to the gas fluid the way groove for the refrigerant's flow.

위상각기준의 이동을 통한 새로운 패널티 계수의 계산방법 (A New Calculation of Generator Penality Factors through transposition of System Angle Reference)

  • 이상중
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권1호
    • /
    • pp.1-5
    • /
    • 2001
  • In this paper, a new method for calculating the penalty factors of all generators including the slack bus is presented. A simple transposition of the angle reference, from the conventional slack bus to another bus where no generation exists, enables the derivation of the loss sensitivity of the slack bus. Penalty factors are obtained without any physical assumption through a simple substitution of the bus loss sensitivities. Penalty factors calculated by proposed method are not dependent on reference bus and can also be directly substituted into the general ELD equation for computing the optimal dispatch. Equations for loss sensitivities, Penalty factors and ELD are calculated simultaneously in normal power flow computation. A case study on a test system has proved the effectiveness of the proposed' angle reference transposition' method.

  • PDF

마이크로휜관 내 단상 냉각 유동 열전달 및 압력 강하 특성에 관한 실험적 연구 (Experiments on Single Phase Cooling Heat Transfer and Pressure Drop Characteristics in Microfin Tubes)

  • 이규정;한동혁
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.231-239
    • /
    • 2002
  • Experiments on the single phase cooling heat transfer and pressure drop with microfin tubes were performed using water as a test fluid. Experimental data were obtained in the range of Reynolds number 3000 ~40000 and Prandtl number 4-6. The data of microfin tubes presented the characteristics of rough surface tube in pressure drop and heat transfer Experimental data were compared with the heat transfer and friction factor correlations of smooth tubes. Heat transfer enhancements of microfin tubes were lower than pressure drop penalty factors. The helix angle is more significant parameter in both of the pressure drop and heat transfer than the relative roughness. The correlations of Nusselt number and friction factor were suggested for the tested microfin tubes. Maximum deviations between correlations and experimental data were within $\pm15$% for Nusselt number and $\pm10$% for friction factor.

e-저작권침해 원인에 대한 구조방정식모델 분석 (Analysis on a Structural Equation Model of e-Piracy Causes)

  • 유상미;김미량
    • 인터넷정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.145-156
    • /
    • 2011
  • 본 연구는 e-저작권침해 일탈행위를 유발하는 원인을 규명하기 위해 진행되었다. 이를 위해 대학생 531명을 대상으로 설문을 실시하였고, 여기서 얻어진 데이터를 분석하기 위해서 구조방정식모델(SEM)을 사용하였다. 구조방정식모델의 설계는 익명상황, 규범의식, 처벌인지를 e-저작권침해에 대한 직접적인 변인으로 구성하였고, 또한 익명상황을 규범의식과 처벌인지에 대한 변인으로 설정하였다. 변인들 간의 직 간접적 인과관계를 분석한 결과, 익명상황은 e-저작권침해에 대한 직접적인 원인으로 나타났으나, 규범의식과 처벌인지 변인은 통계적으로 유의하지 않았다. 또한, 익명상황은 규범의식과 처벌인지에 대한 직접적으로 원인이며, 규범의식을 매개로 처벌인지에 간접적으로 영향을 미치는 것으로 밝혀졌다. 이러한 연구결과로 볼 때, e-저작권침해를 예방하기 위해서는 익명상황에서 규범을 지키는 것을 훈련할 수 있는 적절한 교육적 기회를 제공할 필요가 있다. 이를 위한 다양하고 효과적인 정보윤리 교육방법에 대한 모색이 이루어져야 할 것이다.