• Title/Summary/Keyword: Pelton Turbine

Search Result 4, Processing Time 0.016 seconds

Performance Characteristics and Efficiencies of Micro-Hydro Pelton Turbine with Nozzle Diameter Variation (노즐 구경에 따른 초소수력 펠턴 터빈의 효율 및 성능 특성)

  • Jo, In Chan;Park, Joo Hoon;Shin, Youhwan;Kim, Kwang Ho;Chung, Jin Taek;Kim, Dong Ik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.60-65
    • /
    • 2015
  • This paper deals with performance characteristics and efficiencies of Pelton turbine can be applied as one of ERDs (Energy Recovery Devices) of PRO (Pressure Retarded Osmosis) system for desalination. The objective of this study is experimentally estimating the performance of micro-scale Pelton turbine for PRO pilot plant. Especially the performance characteristics with variations of jet nozzle diameter of Pelton turbine are discussed in detail. In order to do this, lab scale test rig of Pelton turbine was made for performance test, which includes water tank, Pelton wheel with buckets, jet nozzle and torque brake and so on. The parameter effects related on Pelton turbine's efficiency were investigated and discussed on the influence of the variations of load and speed ratio.

Performance Analysis of a Micro-Hydro Pelton Turbine for the Osmotic Power Generation (삼투압발전용 마이크로 펠턴터빈의 성능해석)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2011
  • This paper presents the transient performance analysis of a micro-hydro Pelton turbine for the osmotic power generation using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow field in the micro Pelton turbine with a single-jet is investigated by the CFD code adopted in the present study. Predicted characteristic curves agree fairly well with measured data for a prototype Pelton turbine over the normal operating conditions. The computational analysis method presented herein can be effectively applied to the hydraulic design optimization process of general purpose Pelton turbine runners.

Mathematical Model for the Effect of Blade Friction on the Performance of Pelton Turbine

  • Atthanayake, Iresha Udayangani;Sugathapala, Thusitha;Fernando, Rathna
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.4
    • /
    • pp.396-409
    • /
    • 2011
  • Water turbines have been used in electricity generation for well over a century. Hydroelectricity now supplies 19% of world electricity. Many hydro power plants are operated with Pelton turbines, which is an impulse turbine. The main reasons for using impulse turbines are that they are very simple and relatively cheap. As the stream flow varies, water flow to the turbine can be easily controlled by changing the number of nozzles or by using adjustable nozzles. Scientific investigation and design of turbines saw rapid advancement during last century. Most of the research that had been done on turbines were focused on improving the performance with particular reference to turbine components such as shaft seals, speed increasers and bearings. There is not much information available on effects of blade friction on the performance of turbine. The main focus in this paper is to analyze the performance of Pelton turbine particularly with respect to their blade friction.

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.