• Title/Summary/Keyword: Pellet mill

Search Result 16, Processing Time 0.026 seconds

Comparison of Mash and Pelleting Feed Production Cost (분말사료와 Pallet 사료의 생산비 비교)

  • Park, Kyung Kyu;Chung, D.S.;Behnke, K.;Kim, In Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.55-61
    • /
    • 1985
  • In an attempt to compare the mash and pelleting costs, individual production costs of eash mash and pelleting are analyzed. For the analysis, Park's model (1982) are used. According to the results of the analysis, the following conclusions are made. 1. Total energy cost for pelleting is 4 times higher than that for mash feed production. 2. Labor cost for pelleting is 20 % higher than that of mash feed. 3. Capital requirements for pelleting feed mill is approximately 20 % higher than that for mash feed mill when feed mill size is 200 ton/day. 4. Total production cost for pelleting is from 30 % to 50 % higher than that for mash feed when mill size ranges from 100 ton/day to 400 ton/day.

  • PDF

Effect of the Moisture Content and Pellet Mill Type on the Physical and Chemical Characteristics of Italian ryegrass Pellet (펠렛밀과 수분함량이 이탈리안 라이그라스 펠렛의 물리적 특성 및 화학적 성상에 미치는 영향)

  • Moon, Byeong Heoun;Shin, Jong Seo;Park, Hyung Soo;Park, Byeong Ki;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • The objective of this study was to determine the effect of the moisture content and pellet mill type on the physical and chemical characteristics of Italian ryegrass (IRG) pellet. Moisture content of raw material significantly (p<0.05) affected IRG pellet formation. Moisture content at 25% was the best condition for IRG pellet formation in terms of shape, power load and temperature changes. The hardness of pellet was decreased when moisture content was increase. However, the hardness of pellet was not affected by pellet mill type. Moisture content at 30% dramatically (p<0.05) decreased the durability compared to moisture content at 25%. Dry matter content of IRG pellet was increased (p<0.05) after pelleting. Total count of microorganism was decreased in pellet due to pressure heat and moisture losses during the pelleting process. These results indicated that the proper moisture content of Italian ryegrass pelleting would be at 25%. In addition, Roll & flat die type would be more suitable than Ring die and Die & flat die type in IRG pelleting. Pelleting works would be beneficial for improving forage quality and long storage.

Characteristics of Bio Pellets from Spent Coffee Grounds and Pinewood Charcoal Based on Composition and Grinding Method

  • Nopia CAHYANI;Andi Detti YUNIANTI;SUHASMAN;Kidung Tirtayasa Putra PANGESTU;Gustan PARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.23-37
    • /
    • 2023
  • One type of biomass that has promising potential for bio pellet production is spent coffee grounds (SCGs). However, previous studies have shown that SCGs in bio pellets cause a lot of smoke. Therefore, they need to be mixed with a material that has a higher calorific value to produce better quality pellets. One material that can be used is pine wood because it has a natural resin content that can increase the calorific value. The aim of this study was to examine the quality of bio pellets produced with SCGs and pine wood charcoal at different particle sizes. The charcoal was ground using either a hammer mill (HM) or a ball mill (BM). Pine wood charcoal was mixed with SCGs at ratios of SCGs to pine wood charcoal of 4:6 and 6:4 by weight, respectively, and the adhesive used a tapioca with a composition ratio 5% of the raw material. The bio pellets were produced using a manual pellet press. The quality of the bio pellets was assessed based on Indonesian National Standard (SNI) 8021-2014, and the physical observations include flame length, burning rate, and compressive strength. The average water content, ash content, and calorific value of the bio pellets were in accordance with SNI 8021-2014, but the density and ash content values were below the standard values. The BM variation of bio pellets had a higher compressive strength than the HM variation, and the 4:6 BM variation had the longest burning time compared with 4:6 HM.

Fuel Characteristics of Pitch Pine and Mongolian Oak Pellets Fabricated with Coffee Waste and Used Frying Oil as an Additive Using a Pilot-scale Flat-die Pellet Mills (식품부산물인 커피박과 폐식용유를 첨가제로 사용하여 파일럿 규모의 평다이 성형기로 제조한 리기다소나무 및 신갈나무 펠릿의 연료적 특성)

  • Yang, In;Jin, Xuanjun;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study evaluated the potential of coffee waste (CW) and used frying oil (UFO) as an additive in the production of pitch pine (PIP) and Mongolian oak (MOK) pellets. Ash contents obtained from CW and UFO were 0.5% and <0.1%, respectively. The calorific values of UFO (31.4 MJ/kg) and CW (26.3 MJ/kg) are higher than PIP (20.6 MJ/kg) and MOK (19.1 MJ/kg). For pellets fabricated using a pilot-scale flat-die pellet mill, regardless of fabricating conditions, moisture content (MC) and bulk density of PIP and MOK pellets satisfied the A1 wood pellet standard for residential and small-scale commercial uses, as designated by the National Institute of Forest Science (NIFOS) of the Republic of Korea. When CW was used as an additive, durability of PIP pellets made with 12%-MC sawdust and MOK pellets increased. The optimal conditions for producing PIP and MOK pellets could be by adding 20 mesh CW as an additive and the using of 12%-MC sawdust. However, durability of PIP pellets and ash content MOK pellets did not satisfy the A1 wood pellet standard of NIFOS. Thus, further research is needed to improve the properties of wood pellets with additives.

Evaluating the Properties and Commercializing Potential Of Rape Stalk-based Pellets Produced with a Pilot-scaled Flat-die Pellet Mill (파일럿 규모의 평다이 성형기로 제조한 유채대 펠릿의 연료적 특성 및 상용화 가능성 평가)

  • Sei Chang Oh;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • This study was conducted to evaluate the potential of rape stalk (RAS) as a raw material for the production of solid bio-fuels. RAS was immersed in an aqueous solution with acetic acid concentration of 1 percent, The content of reducing sugars separated from the RAS was analyzed. Glucose showed the highest content followed by xylose, galactose, arabinose and mannose. The immersed and non-immersed RAS were used for producing pellets with a pilot-scaled flat-die pellet mill. Bulk density and calorific values of the pellets improved with the use of the immersed RAS and the addition of wood particles. The values exceeded the minimum requirements for the A-grade of non-woody pellets (≧600 kg/m3 & ≧ 14.5 MJ/kg) designated by the ISO. Ash content of the pellets reduced with the immersion of RAS and the value satisfied the A-grade level (≦6.0%) of the ISO standard. The durability of the immersed RAS-based pellets was much higher than that of non-immersed IRS-based pellets, and the values were increased with the addition of wood particles. However, the durability did not meet the acceptance level for the B-grade of non-woody pellets (≧96.0%) designated by the ISO. These results suggested that the addition of binders in the production of non-woody pellets using an RAS immersed in acetic acid-based aqueous solution is required for the commercialization of the pellets.

Effect of Chestnut-shell Tea Waste and Castor Oil as an Additive on Fuel Characteristics of Pellets Fabricated with Pitch Pine and Mongolian Oak (첨가제로서 율피차 부산물과 피마자유가 리기다소나무 및 신갈나무 펠릿의 연료적 특성에 미치는 영향)

  • Kim, HyeonJeong;Yang, In;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • This study aimed to determine the optimal conditions for fabricating pitch pine (PCP) and Mongolian oak (MOK) pellets using chestnut-shell tea waste (CSW) and castor oil (CSO) as additives. For pellets fabricated using a pilot-scale flat-die pellet mill, all moisture content (MC) was in line with A1 wood pellet standards for residential and small-scale commercial uses designated by the National Institute of Forest Science at the Republic of Korea (NIFOS), regardless of fabricating conditions; the durability of PCP pellets prepared using PCP particles with 10% MC, and CSW addition also satisfied these criteria. The moisture tolerance of PCP pellets improved with combination of 2 wt% CSW and 2-6 wt% CSO. Overall, use of 20 mesh CSW as an additive, PCP with 10% MC, and MOK with 12% MC was found to be optimal. Moreover, using CSO as an additive, high-quality PCP and MOK pellets can be fabricated by adjusting the particles to 12% MC. However, the durability of PCP and MOK pellets prepared using these conditions did not meet the wood pellet standards for residential and small-scale commercial use. Therefore, further research is needed to improve the durability of these pellets.

Effects of Paper Mill Sludge-Fertilizer Application on the Growth Performances of Tree Seedlings (제지(製紙)슬러지 가공비료(加工肥料)의 시용(施用)이 수묘(樹苗)의 생육(生育)에 미치는 영향(影響))

  • Kwon, Ki-Won;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.219-229
    • /
    • 1993
  • Effects of paper mill sludge-fertilizers were investigated on the growth performances of tree seedlings under field conditions. Two types of sludge-fertilizers applied were an organic sludge compost and a processed sludge-pellet fertilizer strengthened with several components of organic and inorganic nutrients. Three species of tree seedlings studied were ibota privet(Ligustrum obtusifolium) and yellow poplar(Liriodendron tulipifera) of 1-0 year seedlings and also eastern white pine(Pinus strobus) of 2-2 year seedlings. Nitrogen and phosphorus contents of plot soil treated with sludge compost+sludge-pellet fertilizer+sludge-pellet fertilizer plot were increased to 8 times and 2.6 times as those of control plot, respectively. The growth performances of root collar diameter and seedling height were repeatedly measured up to five times through the growing season and the results were analyzed statistically by analysis of variance of randomized block design and Duncan's multiple range test. The growth performances of dry weight were measured after last fifth measurements.

  • PDF

Applicability of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability (다양한 바이오매스의 분쇄도 실험을 통한 미분탄 화력발전 적용가능성 연구)

  • Kang, Byeol;Lee, Yongwoon;Ryu, Changkook;Yang, Won
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2017
  • Recently usage of biomass is increased in pulverized coal power plants for reduction of $CO_2$ emission. Many problems arise when thermal share of the biomass is increased, and milling of the biomasses is one of the most important problems due to their low grindability when existing coal pulverizer is used. Grindability of coal can be measured through the HGI (Hardgrove grindability index) equipment as a standard, but method of measuring biomass grindability has not been established yet. In this study, grinding experiment of coal and biomass was performed using a lab-scale ball mill. One type of coal (Adaro coal) and six biomasses (wood pellet (WP), empty fruit bunch (EFB), palm kernel shell (PKS), walnut shell (WS), torrefied wood chip (TBC) and torrefied wood pellet (TWP)) were used in the experiment. Particle size distributions of the fuels were measured after being milled in various pulverization times. Pulverization characteristics were evaluated by portion of particles under the diameter of $75{\mu}m$. As a result, about 70% of the TBC and TWP were observed to be pulverized to sizes of under $75{\mu}m$, which implies that they can be used as alternative biomass fuels without modification of the existing mill. Other biomass was observed to have low grindability compared with torrefied biomass. Power consumption of the mill for various fuels was measured as well, and the results show that lower power was consumed for torrefied biomasses. This result can be used for characterization of biomass as an alternative fuel for pulverized coal power plants.

Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology (반응표면분석법을 이용한 전도성물질의 절연코팅 프로세스의 최적화)

  • Sim, Chol-Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data ($Adj-R^2=0.944$). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was $530k{\Omega}{\cdot}cm$.

Effects of Feed Processing and Feeding Methods on Growth and Carcass Traits for Growing-Finishing Pigs

  • Chae, B.J.;Han, In K.;Kim, J.H.;Yang, C.J.;Ohh, S.J.;Rhee, Y.C.;Chung, Y.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.164-169
    • /
    • 1997
  • The present experiment was conducted to evaluate the effects of feed processing and feeding methods on growth performance and carcass characteristics of growing-finishing pigs. A total of 72 pigs (LYD, 22.24 kg BW) were employed for a 90-d feeding trial. Treatments were 1) mash dry feeding (MD), 2) mash wet feeding (MW), 3) pellet dry feeding (PD), and 4) extruded pellet dry feeding (EPD). Corn, soybean meal and wheat bran in the basal diets were extruded before mixing and pelleting for EPD diet production. Ileal or fecal digestibility and carcass traits including lean meat percentage and weights of stomach ulcer were also examined. During the growing period, pigs fed PD showed improved (p < 0.05) average daily gain (ADG) and feed conversion (F/G) over those fed MD, whereas no significant differences in average daily feed intake (ADFI) were found among dietary treatments. Finisher pigs fed MD showed lover, but not significant, ADG and F/G than those fed MW, PD or EPD. For the overall period, pigs fed PD grew faster (p < 0.05) than those fed MD or EPD. Feed intake was different between the two feeding methods (MD vs MW), and between the two processed feeds (PD vs EPD). The digestibility of crude fat was higher (p < 0.05) in pigs fed EPD than in pigs fed mash feeds. NFE digestibility of EPD treatment was also higher (p < 0.05) than that of PD. Back fat (10th rib area) was thicker (p < 0.05) tn pigs fed MD than in pigs fed EPD. other carcass traits including incidence of esophagogastric ulcers were not different among treatments. In conclusion, pelleting appeared to bo the desirable processing methods and wet feeding could also be recommended for growing-finishing pigs.