• 제목/요약/키워드: PelB signal peptide

검색결과 3건 처리시간 0.014초

Extracellular Overproduction of $\beta$-Cyclodextrin Glucanotransferase in a Recombinant E. coli Using Secretive Expression System

  • Lee, Kwang-Woo;Shin, Hyun-Dong;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.753-759
    • /
    • 2002
  • $\beta$-Cyclodextrin glucanotransferase ($\beta$-CGTase) was overproduced extracellularly using recombinant E. coli by transforming the plasmid pECGT harboring a secretive signal peptide. The $\beta$-CGTase gene of alkalophilic Bacillus firmus var alkalophilus was inserted into the high expression vector pET20b(+) containing a secretive pelB signal peptide, and then transformed into E. coli BL2l(DE3)pLysS. The optimum culture conditions fer the overproduction of $\beta$-CGTase were determined to be TB medium containing 0.5% (w/v) soluble starch at post-induction temperature of $25^{\circ}C$. A significant amount of $\beta$-CGTase, up to 5.83 U/ml, which was nine times higher than that in the parent strain B. firmus var. alkalophilus, was overproduced in the extracellular compartment. A pH-stat fed-batch cultivation of the recombinant E. coli was also performed to achieve the secretive overproduction of $\beta$-CGTase at a high cell density, resulting in production of up to 21.6 U/ml of $\beta$-CGTase.

High-Level Expression in Escherichia coli of Alkaline Phosphatase from Thermus caldophilus GK24 and Purification of the Recombinant Enzyme

  • Lee, Jung-Ha;Cho, Yong-Duk;Choi, Jeong-Jin;Lee, Yoon-Jin;Hoe, Hyang-Sook;Kim, Hyun-Kyu;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.660-665
    • /
    • 2003
  • High-level expression of Thermus caldophilus GK24 alkaline phosphatase (Tca APase) was achieved in Escherichia coli using the pET-based expression plasmids, pEAP1 and pEAP2. In the case of plasmid pEAP2, the signal peptide region of Tca APase was replaced by the PelB leader peptide of expression vector pET-22b(+). Furthermore, the expression level was somewhat higher than that of plasmid pEAPl. A rapid purification procedure of Tca APase overproduced in E. coli was developed which involved heating to denature E. coli proteins followed by HiTrap Heparin HP column chromatography. Optimal temperature and pH and $Mg^{2+}$ dependence of the recombinant Tca APase were similar to those of native enzyme isolated from T. caldophilus GK24.

The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3)

  • Dewi, Kartika Sari;Utami, Ratna Annisa;Hariyatun, Hariyatun;Pratiwi, Riyona Desvy;Agustiyanti, Dian Fitria;Fuad, Asrul Muhamad
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.148-156
    • /
    • 2021
  • Single-chain antibodies against epidermal growth factor receptor variant III (EGFRvIII) are potentially promising agents for developing antibody-based cancer treatment strategies. We described in our previous study the successful expression of an anti-EGFRvIII scFv antibody in Escherichia coli. However, we could also observe the formation of insoluble aggregates in the periplasmic space, limiting the production yield of the active product. In the present study, we investigated the mechanisms by which growth conditions could affect the expression of the soluble anti-EGFRvIII scFv antibody in small-scale E. coli NiCo21(DE3) cultures, attempting to maximize production. The secreted scFv molecules were purified using Ni-NTA magnetic beads and protein characterization was performed using SDS-PAGE and western blot analyses. We used the ImageJ software for protein quantification and determined the antigen-binding activity of the scFv antibody against the EGFRvIII protein. Our results showed that the highest percentage of soluble scFv expression could be achieved under culture conditions that combined low IPTG concentration (0.1 mM), low growth temperature (18℃), and large culture dish surface area. We found moderate-yield soluble scFv production in the culture medium after lactose-mediated induction, which was also beneficial for downstream protein processing. These findings were confirmed by conducting western blot analysis, indicating that the soluble, approximately 30-kDa scFv molecule was localized in the periplasm and the extracellular space. Moreover, the antigen-binding assay confirmed the scFv affinity against the EGFRvIII antigen. In conclusion, our study reveals that low-speed protein expression is preferable to obtain more soluble anti-EGFRvIII scFv protein in an E. coli expression system.