• 제목/요약/키워드: Pediatric Dose Formulas

검색결과 4건 처리시간 0.015초

핵의학검사의 방사성의약품 소아투여량 공식 별 투여량 및 유효선량 비교 (Comparing of the Administered Activities and the Effective Dose of the Various Pediatric Dose Formulas of Nuclear Medicine)

  • 길종원
    • 한국융합학회논문지
    • /
    • 제8권8호
    • /
    • pp.147-154
    • /
    • 2017
  • 본 연구는 소아핵의학검사에 사용하는 다양한 소아투여량 공식의 투여량(MBq)과 유효선량(mSv)을 산출 비교하여 적정투여량의 기준을 위한 기초자료를 제공하고자 한다. 연구는 2가지 방사성의약품($^{99m}Tc$-MDP와 $^{99m}Tc$-Pertechnetate)의 성인투여량을 기준으로 5가지 소아투여량공식(Clark법, Area법, Webster법, Young법, Solomon(Fried)법) 간 투여량과 유효선량을 비교하였다. 소아투여량 산출에 기준이 되는 성인투여량은 정준기, 이명철 '핵의학'에 수록된 값을 사용하였으며, 유효선량 산출을 위한 방사성의약품의 방사능당 유효선량(mSv/MBq)은 ICRP 80과 UNSCEAR 2008 보고서에 수록된 값을 사용하였다. 연구결과 Young법이 산출량이 가장 적으며 다른 공식과의 차이는 최소 1.7배-최대 3.4배였다. $^{99m}Tc$-MDP의 공식 간 투여량 차이는 최대 309.9MBq, 유효선량은 3.76mSv, $^{99m}Tc$-Pertechnetate는 최대 154.9MBq, 유효선량은 5.50mSv였다. 소아투여량 공식 간 투여량뿐만 아니라 유효선량도 차이가 크기 때문에 의료방사선의 최적화를 위한 적정투여량 소아산출법이 개발되어야 한다.

Saudi Experts Consensus on Diagnosis and Management of Pediatric Functional Constipation

  • Alshehri, Dhafer B.;Sindi, Haifa Hasan;AlMusalami, Ibrahim Mohamod;Rozi, Ibrahim Hosamuddin;Shagrani, Mohamed;Kamal, Naglaa M.;Alahmadi, Najat Saeid;Alfuraikh, Samia Saud;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제25권3호
    • /
    • pp.163-179
    • /
    • 2022
  • Although functional gastrointestinal disorders (FGIDs) are very common in pediatric patients, there is a scarcity of published epidemiologic data, characteristics, and management patterns from Saudi Arabia, which is the 2nd largest Arabic country in terms of area and the 6th largest Arabic country in terms of population, with 10% of its population aged <5 years. Functional constipation (FC) is an FGID that has shown a rising prevalence among Saudi infants and children in the last few years, which urges us to update our clinical practices. Nine pediatric consultants attended two advisory board meetings to discuss and address current challenges, provide solutions, and reach a Saudi national consensus for the management of pediatric constipation. The pediatric consultants agreed that pediatricians should pay attention to any alarming signs (red flags) found during history taking or physical examinations. They also agreed that the Rome IV criteria are the gold standard for the diagnosis of pediatric FC. Different therapeutic options are available for pediatric patients with FC. Dietary treatment is recommended for infants with constipation for up to six months of age. When non-pharmacological interventions fail to improve FC symptoms, pharmacological treatment with laxatives is indicated. First, the treatment is aimed at disimpaction to remove fecal masses. This is achieved by administering a high dose of oral polyethylene glycol (PEG) or lactulose for a few days. Subsequently, maintenance therapy with PEG should be initiated to prevent the re-accumulation of feces. In addition to PEG, several other options may be used, such as Mg-rich formulas or stimulant laxatives. However, rectal enemas and suppositories are usually reserved for cases that require acute pain relief. In contrast, infant formulas that contain prebiotics or probiotics have not been shown to be effective in infant constipation, while the use of partially hydrolyzed formula is inconclusive. These clinical practice recommendations are intended to be adopted by pediatricians and primary care physicians across Saudi Arabia.

진사탁(陳士鐸) 임상 이론의 특징에 관한 연구 (A Study on Characteristics of Jinsatak(陳士鐸)'s Clinic Theory)

  • 정경호;김기욱;박현국
    • 대한한의학원전학회지
    • /
    • 제22권3호
    • /
    • pp.31-51
    • /
    • 2009
  • The characteristics of Jin's ideas on clinic theory can be arranged as follows. 1. Jin emphasized warming and tonifying[溫補] in treatment and the part that shows this the best is the taking care of[調理] the Vital gate[命門], kidney, liver, and spleen. His ideas were based on his understanding of a human life's origin, and was influenced by Seolgi(薛己), Joheon-ga(趙獻可) and Janggaebin(張介賓)'s Vital gate and source Gi theory(元氣說) so scholastically, he has that in common with them but was later criticized by later doctors such as Oksamjon(玉三尊) as an 'literary doctor(文字醫)' who followed the ideas of "Uigwan(醫貫)". 2. The warming and tonifying school[溫補學派], who were influenced by Taoism, said in their theory of disease outbreak[發病學說] that since one must not hurt one's Yin essence and Yang fire [陰精陽火] there is more deficiency than excess, so that was why they used tonifying methods. Jin was also like them and this point of view is universal in internal medicine, gynecology, pediatric medicine and surgery and so on. 3. Jin, who saw the negative form of pulse diagnosis[診脈] emphasized following symptoms over pulse diagnosis using the spirit of ‘finding truth based on truth[實事求是]' in "Maekgyeolcheonmi(脈訣闡微)", but emphasized 'the combination of pulse and symptoms[脈證合參]'. He understood pulse diagnosis as a defining tool for symptoms, and in "Seoksilbirok(石室秘錄)" simplified pulse diagnosis into 10 methods : floating/sunken(浮沉), slow/fast(遲數), large/fine(大小), vacuous/replete(虛實) and slippery/rough(滑澀). 4. Jin used 'large formulas(大方)' a lot that usually featured a large dose, and in " Bonchosinpyeon(本草新編)" he thought of the seven formulas(七方) and ten preparations(十劑) as the standard when using medicine. He did away with old customs and presented a 'new(新)' and 'extra(奇)' point of view. He especially used a lot of Insam(人蔘) when tonifying Gi and Geumeunhwa(金銀花) when treating sores and ulcers. 5. In the area of surgery Jin gave priority to the early finding and treatment of disease with internal treatment[內治] and was against the overuse of acupuncture. However records of surgical measures in a special situation like lung abscesses(肺癰) and liver abscesses(肝癰), and anesthetic measures using 'Manghyeongju(忘形酒)' and 'Singoiyak(神膏異藥)' and opening the abdomen or skull, and organ transplants using a dog's tongue are important data. 6. Jin stated the diseases of Gi and blood broadly. Especially in the principles of treating blood, blood diseases had to be forwarded[順] and Gi regulation[理氣] was the number one priority and stated the following two treatments. First, in "Jeonggiinhyeolpyeon(精氣引血篇)" of volume 6 of "Oegyeongmieon(外經微言)", for the rules for treating blood he stated the pattern identification of finding Gi in blood and blood in Gi. Second, he emphasized Gi regulation(理氣) in blood diseases and stated that the Gi must be tonifyed after finding the source of the loss of blood.

  • PDF

Usefulness of serum cystatin C to determine the dose of vancomycin in neonate

  • Shin, Jeong Eun;Lee, Soon Min;Eun, Ho Seon;Park, Min Soo;Park, Kook In;Namgung, Ran
    • Clinical and Experimental Pediatrics
    • /
    • 제58권11호
    • /
    • pp.421-426
    • /
    • 2015
  • Purpose: The vancomycin dosage regimen is regularly modified according to the patient's glomerular filtration rate (GFR). In the present study, we aimed to assess the usefulness of serum cystatin C (Cys-C) concentration, compared with serum creatinine (SCr) concentration, for predicting vancomycin clearance (CLvcm) in neonates. Methods: We retrospectively analyzed the laboratory data of 50 term neonates who were admitted to the neonatal intensive care unit and received intravenous vancomycin, and assessed the pharmacokinetic profiles. Creatinine clearance (CLcr) and GFR based on Cys-C (GFRcys-c) were estimated using the Schwartz and Larsson formulas, respectively. Results: The mean CLvcm (${\pm}$standard deviation) was $74.52{\pm}31.17L/hr$, the volume of distribution of vancomycin was $0.67{\pm}0.14L$, and vancomycin half-life was $9.16{\pm}17.42hours$. The SCr was $0.46{\pm}0.25mg/dL$ and serum Cys-C was $1.43{\pm}0.34mg/L$. The peak and trough concentrations of vancomycin were $24.65{\pm}14.84$ and $8.10{\pm}5.35mcg/mL$, respectively. The calculated GFR based on serum creatinine concentration (GFR-Cr) and GFRcys-c were $70.2{\pm}9.45$ and $63.6{\pm}30.18mL/min$, respectively. The correlation constant for CLvcm and the reciprocal of Cys-C (0.479, P=0.001) was significantly higher than that for CLvcm and the reciprocal of SCr (0.286, P=0.044). GFRcys-c was strongly correlated with CLvcm (P=0.001), and the correlation constant was significantly higher than that for CLvcm and CLcr (0.496, P=0.001). Linear regression analysis showed that only GFRcys-c was independently and positively correlated with CLvcm (F=41.9, P<0.001). Conclusion: The use of serum Cys-C as a marker of CLvcm could be beneficial for more reliable predictions of serum vancomycin concentrations, particularly in neonates.