• Title/Summary/Keyword: Pedestrian navigation

Search Result 77, Processing Time 0.025 seconds

Stable Zero-Velocity Detection Method Regardless of Walking Speed for Foot-Mounted PDR

  • Cho, Seong Yun;Lee, Jae Hong;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2020
  • In Integration Approach (IA)-based Pedestrian Dead Reckoning (PDR), it is important to detect the exact zero-velocity of the foot with an Inertial Measurement Unit (IMU). By detecting zero-velocity during the stance phase of the foot touching the ground and executing Zero-velocity UPdaTe (ZUPT) at the exact time, stable navigation information can be provided by the PDR. When the pace is fast, however, it is not easy to accurately detect the zero-velocity because of the small stance phase interval and the large signal variance of the corresponding interval. Incorrect zero-velcity detection greatly causes navigation errors of IA-based PDR. In this paper, we propose a method to detect the zero-velocity stably even at high speed by novel buffering of IMU's output data and signal processing of the buffer. And we design a PDR based on this. By analyzing the performance of the proposed Zero-Velocity Detection (ZVD) algorithm and ZVD-based PDR through experiemnts, we confirm that the proposed method can provide accurate navigation information of pedestrians such as firefighters in the indoor space.

Extraction of Landmarks Using Building Attribute Data for Pedestrian Navigation Service (보행자 내비게이션 서비스를 위한 건물 속성정보를 이용한 랜드마크 추출)

  • Kim, Jinhyeong;Kim, Jiyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.203-215
    • /
    • 2017
  • Recently, interest in Pedestrian Navigation Service (PNS) is being increased due to the diffusion of smart phone and the improvement of location determination technology and it is efficient to use landmarks in route guidance for pedestrians due to the characteristics of pedestrians' movement and success rate of path finding. Accordingly, researches on extracting landmarks have been progressed. However, preceding researches have a limit that they only considered the difference between buildings and did not consider visual attention of maps in display of PNS. This study improves this problem by defining building attributes as local variable and global variable. Local variables reflect the saliency of buildings by representing the difference between buildings and global variables reflects the visual attention by representing the inherent characteristics of buildings. Also, this study considers the connectivity of network and solves the overlapping problem of landmark candidate groups by network voronoi diagram. To extract landmarks, we defined building attribute data based on preceding researches. Next, we selected a choice point for pedestrians in pedestrian network data, and determined landmark candidate groups at each choice point. Building attribute data were calculated in the extracted landmark candidate groups and finally landmarks were extracted by principal component analysis. We applied the proposed method to a part of Gwanak-gu, Seoul and this study evaluated the extracted landmarks by making a comparison with labels and landmarks used by portal sites such as the NAVER and the DAUM. In conclusion, 132 landmarks (60.3%) among 219 landmarks of the NAVER and the DAUM were extracted by the proposed method and we confirmed that 228 landmarks which there are not labels or landmarks in the NAVER and the DAUM were helpful to determine a change of direction in path finding of local level.

Updating Obstacle Information Using Object Detection in Street-View Images (스트리트뷰 영상의 객체탐지를 활용한 보행 장애물 정보 갱신)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.599-607
    • /
    • 2021
  • Street-view images, which are omnidirectional scenes centered on a specific location on the road, can provide various obstacle information for the pedestrians. Pedestrian network data for the navigation services should reflect the up-to-date obstacle information to ensure the mobility of pedestrians, including people with disabilities. In this study, the object detection model was trained for the bollard as a major obstacle in Seoul using street-view images and a deep learning algorithm. Also, a process for updating information about the presence and number of bollards as obstacle properties for the crosswalk node through spatial matching between the detected bollards and the pedestrian nodes was proposed. The missing crosswalk information can also be updated concurrently by the proposed process. The proposed approach is appropriate for crowdsourcing data as the model trained using the street-view images can be applied to photos taken with a smartphone while walking. Through additional training with various obstacles captured in the street-view images, it is expected to enable efficient information update about obstacles on the road.

Accuracy Analysis using Assistant Sensor Integration on Various IMU during GPS Signal Blockage (GPS 신호 단절 상황에서 IMU 사양에 따른 보조센서 통합을 이용한 정확도 분석)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the performances of a medium grade IMU which is aimed for Mobile Mapping System and a low grade IMU for pedestrian navigation are analyzed through simulations under GPS signal blockage. In addition, an analysis on the accuracy improvement of barometer, electronic compass, or multi-sensor(combination of barometer and electronic compass) to correct medium grade or low grade IMU errors in the situation of GPS signal blockage is performed. With the medium grade IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 5m when the block time is over 30 seconds. When we correct IMU with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 60 seconds. In addition, barometer is more effective than the electronic compass when they are combined. In case of low grade IMU like MEMS IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 20m when the block time is over 15 seconds. When we correct INS with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 15 seconds in simulation results. On the contrary to medium grade IMU, electronic compass is more effective than the barometer in case of low velocity such as pedestrian navigation. It is expected that the analysis suggested a method to decrease position or attitude error using aided sensor integration when MMS or pedestrian navigation is operated under 1he environment of GPS signal blockage.

Evaluation of Mobile Device Based Indoor Navigation System by Using Ground Truth Information from Terrestrial LiDAR

  • Wang, Ying Hsuan;Lee, Ji Sang;Kim, Sang Kyun;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.395-401
    • /
    • 2018
  • Recently, most of mobile devices are equipped with GNSS (Global Navigation Satellite System). When the GNSS signal is available, it is easy to obtain position information. However, GNSS is not suitable solution for indoor localization, since the signals are normally not reachable inside buildings. A wide varieties of technology have been developed as a solution for indoor localization such as Wi-Fi, beacons, and inertial sensor. With the increased sensor combinations in mobile devices, mobile devices also became feasible to provide a solution, which based on PDR (Pedestrian Dead Reckoning) method. In this study, we utilized the combination of three sensors equipped in mobile devices including accelerometer, digital compass, and gyroscope and applied three representative PDR methods. The proposed methods are done in three stages; step detection, step length estimation, and heading determination and the final indoor localization result was evaluated with terrestrial LiDAR (Light Detection And Ranging) data obtained in the same test site. By using terrestrial LiDAR data as reference ground truth for PDR in two differently designed experiments, the inaccuracy of PDR methods that could not be found by existing evaluation method could be revealed. The firstexperiment included extreme direction change and combined with similar pace size. Second experiment included smooth direction change and irregular step length. In using existing evaluation method which only checks traveled distance, The results of two experiments showed the mean percentage error of traveled distance estimation resulted from three different algorithms ranging from 0.028 % to 2.825% in the first experiment and 0.035% to 2.282% in second experiment, which makes it to be seen accurately estimated. However, by using the evaluation method utilizing terrestrial LiDAR data, the performance of PDR methods emerged to be inaccurate. In the firstexperiment, the RMSEs (Root Mean Square Errors) of x direction and y direction were 0.48 m and 0.41 m with combination of the best available algorithm. However, the RMSEs of x direction and y direction were 1.29 m and 3.13 m in the second experiment. The new evaluation result reveals that the PDR methods were not effective enough to find out exact pedestrian position information opposed to the result from existing evaluation method.

Analysis of Outdoor Positioning Results using Deep Learning Based LTE CSI-RS Data

  • Jeon, Juil;Ji, Myungin;Cho, Youngsu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.169-173
    • /
    • 2020
  • Location-based services are used as core services in various fields. In particular, in the field of public services such as emergency rescue, accurate location estimation technology is very important. Recently, the technology of tracking the location of self-isolation subjects for COVID-19 has become a major issue. Therefore, location estimation technology using personal smart devices is being studied in various ways, and the most widely used method is to use GPS. Other representative methods are using Wi-Fi, Pedestrian Dead Reckoning (PDR), Bluetooth Low Energy (BLE) beacons, and LTE signals. In this paper, we introduced a positioning technology using deep learning based on LTE Channel State Information-Reference Signal (CSI-RS) data, and confirmed the possibility through an outdoor location estimation experiment using a commercial LTE signal.

The Method to Build Knowledge-Base for User's Preference Retrieval (감성정보검색을 위한 지식베이스 구축방법)

  • Kim, Don-Han
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.5-8
    • /
    • 2008
  • This study proposed the Knowledge Base Building method reflecting the user's preferences based on the fuzzy set theory to develop information contents which support pedestrian's navigation. This research evaluated subject's preferences on the commercial spaces set to the hypothetical destination. Also it surveyed the causal relationship between the visual characteristics and the emotional characteristics to propose the methods of Navigation Knowledge Base (NKB). The NKB was composed by three elements; 1.the correlation model between emotional characteristics, 2.the causal relationship between visual characteristics and emotional characteristics, 3.the transformation model between visual characteristics and the physical characteristics.

  • PDF

Vehicular Cyber-Physical Systems for Smart Road Networks

  • Jeong, Jaehoon Paul;Lee, Eunseok
    • Information and Communications Magazine
    • /
    • v.31 no.3
    • /
    • pp.103-116
    • /
    • 2014
  • This paper proposes the design of Vehicular Cyber-Physical Systems (called VCPS) based on vehicular cloud for smart road networks. Our VCPS realizes mobile cloud computing services where vehicles themselves or mobile devices (e.g., smartphones and tablets of drivers or passengers in vehicles) play a role of both cloud server and cloud client in the vehicular cloud. First, this paper describes the architecture of vehicular networks for VCPS and the delay modeling for the event prediction and data delivery, such as a mobile node's travel delay along its navigation path and the packet delivery delay in vehicular networks. Second, the paper explains two VCPS applications as smart road services for the driving efficiency and safety through the vehicular cloud, such as interactive navigation and pedestrian protection. Last, the paper discusses further research issues for VCPS for smart road networks.

Indoor Navigation System for Visually Impaired Persons Using Camera and Range Sensors (카메라와 거리센서를 이용한 시각장애인 실내 보행안내 시스템)

  • Lee, Jin-Hee;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.517-528
    • /
    • 2011
  • In this paper, we propose an indoor navigation system that can do walk safely to the destination for visually impaired persons. The proposed system analyzes images taken with the camera finds the ID of the marker to identify the absolute position of the pedestrian. Using the distance and angle obtained from IMU(Inertial Measurement Unit) accelerometer sensor and a gyro sensor, the system decides the relative position of a pedestrian for the previous position to determine the next direction. At the same time, we simplify a complex spatial structure in front of user by means of ultrasonic sensors and determine an avoidance direction by estimating the patterns. Then, it uses a few IR(Infrared Rays) sensors to detect stair. Our system offers position of visually impaired persons incorporating multiple sensors and helps users to arrive to destination safely.

Indoor Path Recognition Based on Wi-Fi Fingerprints

  • Donggyu Lee;Jaehyun Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2023
  • The existing indoor localization method using Wi-Fi fingerprinting has a high collection cost and relatively low accuracy, thus requiring integrated correction of convergence with other technologies. This paper proposes a new method that significantly reduces collection costs compared to existing methods using Wi-Fi fingerprinting. Furthermore, it does not require labeling of data at collection and can estimate pedestrian travel paths even in large indoor spaces. The proposed pedestrian movement path estimation process is as follows. Data collection is accomplished by setting up a feature area near an indoor space intersection, moving through the set feature areas, and then collecting data without labels. The collected data are processed using Kernel Linear Discriminant Analysis (KLDA) and the valley point of the Euclidean distance value between two data is obtained within the feature space of the data. We build learning data by labeling data corresponding to valley points and some nearby data by feature area numbers, and labeling data between valley points and other valley points as path data between each corresponding feature area. Finally, for testing, data are collected randomly through indoor space, KLDA is applied as previous data to build test data, the K-Nearest Neighbor (K-NN) algorithm is applied, and the path of movement of test data is estimated by applying a correction algorithm to estimate only routes that can be reached from the most recently estimated location. The estimation results verified the accuracy by comparing the true paths in indoor space with those estimated by the proposed method and achieved approximately 90.8% and 81.4% accuracy in two experimental spaces, respectively.