• 제목/요약/키워드: Pedestrian Dynamics

검색결과 29건 처리시간 0.026초

Simulating Pedestrian Evacuation Using Geographic Information Technologies

  • Jingjing, Shi;Hui, Lin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.414-416
    • /
    • 2003
  • Pedestrian assemblage is now a normal phenomenon in modern cities. To maintain an unblocked traffic situation, protect the pedestrians' safety and make preparedness for any emergencies is an important task for police department. Modeling pedestrian dynamics and simulating evacuation process can provide useful information for make accurate decisions. In this paper, by virtue of geographic information technologies, the authors proposed a conceptual framework to simulate pedestrian dynamics and evacuation in an open urban environment.

  • PDF

The Improved Velocity-based Models for Pedestrian Dynamics

  • Yang, Xiao;Qin, Zheng;Wan, Binhua;Zhang, Renwei;Wang, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4379-4397
    • /
    • 2017
  • Three different improvements of the Velocity-based model were proposed in a minimal velocity-based pedestrian model. The improvements of the models are based on the different agent forms. The different representations of the agent lead to different results, in this paper, we simulated the pedestrian movements in some typical scenes by using different agent forms, and the agent forms included the circles with different radiuses, the ellipse and the multi-circle stand for one pedestrian. We have proposed a novel model of pedestrian dynamics to optimize the simulation. Our model specifies the pedestrian behavior using a dynamic ellipse, which is parameterized by their velocity and can improve the simulaton accuracy. We found a representation of the pedestrian much closer to the reality. The phenomena of the self-organization can be observable in the improved models.

Computational fluid dynamics simulation of pedestrian wind in urban area with the effects of tree

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • 제9권2호
    • /
    • pp.147-158
    • /
    • 2006
  • The purpose of this paper is to find a more accurate method to evaluate pedestrian wind by computational fluid dynamics approach. Previous computational fluid dynamics studies of wind environmental problems were mostly performed by simplified models, which only use simple geometric shapes, such as cubes and cylinders, to represent buildings and structures. However, to have more accurate and complete evaluation results, various shapes of blocking objects, such as trees, should also be taken into consideration. The aerodynamic effects of these various shapes of objects can decrease wind velocity and increase turbulence intensity. Previous studies simply omitted the errors generated from these various shapes of blocking objects. Adding real geometrical trees to the numerical models makes the calculating domain of CFD very complicated due to geometry generation and grid meshing problems. In this case the function of Porous Media Condition can solve the problem by adding trees into numerical models without increasing the mesh grids. The comparison results between numerical and wind tunnel model are close if the parameters of porous media condition are well adjusted.

머리모형 충돌에 의한 자동차 접합유리의 실험적 연구 및 유한요소해석 (Experimental Study and Finite Element Analysis about Vehicle Laminated Glass Subject to Headform Impact)

  • 최지훈;오원택;김종혁;박종찬
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.374-379
    • /
    • 2017
  • In vehicle to pedestrian accidents, cracks occur in the vehicle laminated glass due to impact of a pedestrian's head. In this study, FMH(Free Motion Headform) was used to experiment on and analyze the crack patterns on a vehicle laminated glass that collides with an adult headform at speeds of 20 km/h, 30 km/h, and 40 km/h, respectively. Applying the acquired experimental data and material property of the vehicle laminated glass to the structural analysis program LS-Dyna, we could develop the FE model of vehicle laminated glass similar to real vehicle laminated glass. We could estimate the head impact velocity and pedestrian's vehicle impact velocity using the Madymo program.

시뮬레이션을 통한 차대 보행자의 교통사고 분석 (Analysis for Traffic Accidents against Car-Pedestrian on Simulation)

  • 채희홍;임종한
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.115-121
    • /
    • 2012
  • 최근 심각한 차대 보행자의 교통사고로 인명피해가 발생함에도 불구하고 사고원인에 대한 과학적으로 정확히 규명하지 못해 사고처리에 대한 논쟁이 끊임없이 발생하여 경제적 손실 및 정신적 고통이 가중되고 있다. 본 연구에서는 차대보행자의 교통사고분석을 위해 객관적인 교통사고관련 물적 증거자료를 토대로 차량공학, 주행역학), 충돌역학, 교통 및 도로공학 등을 검토하였고, PC-Crash 프로그램을 이용하여 충돌전 차량의 충돌초기속도, 진행궤적 및 충돌자세, 충돌전후속도, 충돌지점 등의 인자를 적용한 결과를 얻어 교통사고의 원인을 분석하였다. 그 결과로 스키드마크 및 보행자 충돌속도는 이론값과 비교할 때 각각 11.2%, 2.27%의 오차를 얻었다.

Verification of Speed-up Mechanism of Pedestrian-level Winds Around Square Buildings by CFD

  • Hideyuki Tanaka;Qiang Lin;Yasuhiko Azegami;Yukio Tamura
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.301-314
    • /
    • 2022
  • Various studies have been conducted on pedestrian-level wind environments around buildings. With regard to the speed-up mechanism of pedestrian-level winds, there are references to downwash effect due to the vertical pressure gradient of boundary layer flow and venturi effect due to flow blocking by the building. Two factors contribute to increase or decrease of downwash effect: change in twodimensional / three-dimensional air flow pattern (Type 1) and change in downwash wind speed due to building size that does not accompany change in airflow pattern (Type 2). Previous studies have shown that downwash effect has a greater influence in increasing or decreasing the area of strong wind than venturi effect. However, these considerations are derived from the horizontal mean wind speed distribution at pedestrian level and are not the result of three-dimensional flow field around the building. Therefore, in this study, Computational Fluid Dynamics using Large Eddy Simulation were performed to verify the downwash phenomena that contributes to increase in wind speed at pedestrian level.

성인 머리모형 임팩터의 FE 모델 개발 (Development and Validation of FE Adult Headform Impactor for Pedestrian Protection)

  • 최지훈;박부창;김종선
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.64-69
    • /
    • 2012
  • Head injury is one of the most common cause of deaths in car-to-pedestrian collisions. To reduce the severity of such injuries, many international safety committees have performed headform impact test for pedestrian protection. In this paper, an adult headform impactor model is developed based on the finite element (FE) method and validated through the numerical simulation. The skin material of headform impactor is known as polyvinyl chloride skin (PVC) and its material was assumed as viscoelastic. The viscoelastic parameters of headform skin are identified by a series of trial and error methods. The new developed FE adult headform impactor is verified by the drop test and FE JARI adult headform impactor provided by Madymo program.

Canopy Model 적용을 통한 도심지 풍환경 예측 CFD 시뮬레이션 결과의 보정 (Modification of CFD results for Wind Environment in Urban area with Tree Canopy Model)

  • 정수현;홍인표;최종규;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.185-193
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high -rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However, the results show differences between CFD and measurement. This difference is attributed to improper use of CFD. Conventional CFD simulation for wind environment around high-rise building does not describe the effect of trees, shrubs and plants near ground which affect the wind environment of pedestrian level. Canopy model can be used to reproduce the aerodynamic effects of trees, shrubs and plants near ground. In this paper, CFD simulation methods coupled with the tree canopy model to predict wind environment of pedestrian level in high-rise residential building block were suggested and the validity was analyzed by comparison between measurement and CFD results.

보행자 레벨의 풍환경 예측 시 Canopy Model을 적용한 CFD 시뮬레이션 타당성 검증 (Validation of applying Canopy model to predict wind environment of pedestrian level by CFD simulation)

  • 정수현;홍인표;송두삼
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.345-353
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high-rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However the results show differences between CFD and measurement. The reason for the difference is that conventional CFD simulation couldn't consider the effect of trees, shrubs and plants which affect the wind environment. Canopy model is a solution to solve the limitation of CFD analysis. In this paper, the canopy model to predict wind environment of pedestrian level by CFD simulation will be proposed and the validity will be analyzed by comparison of measurement and CFD prediction.

  • PDF

도시지역의 보행자 풍환경 개선을 위한 구조물 분석 (Analysis of Structures for Improving Pedestrian Wind Environment in Urban Areas)

  • 박하준;우윤희;유무영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.231-232
    • /
    • 2023
  • With taller buildings and larger typhoons, the impact of building winds is growing. During the 11th Typhoon Hinnamno in 2022, the building wind in Busan L City exceeded 60m/s, reaching the highest speed ever. Although many studies have been conducted on reducing the wind load of buildings, which is one of the problem factors caused by strong wind speed, there is a lack of research on wind speed reducing sculptures that can directly control strong wind speed. In this paper, several types of wind speed reduction sculptures were proposed to solve these problems, and the wind speed reduction capability of the proposed sculptures was analyzed through computational fluid dynamics (CFD). These results can contribute to suggesting effective design methods for improving the urban environment and reducing pedestrian stress.

  • PDF