• 제목/요약/키워드: Pedestrian Detection

검색결과 187건 처리시간 0.023초

Designing a smart safe transportation system within a university using object detection algorithm

  • Na Young Lee;Geon Lee;Min Seop Lee;Yun Jung Hong;In-Beom Yang;Jiyoung Woo
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.51-59
    • /
    • 2024
  • 교내 보행자 교통사고를 예방하고 안전한 환경을 조성하기 위해 교내 위험 구간을 설정하고, 해당 구역에서 차량 속도 측정 및 교차로 횡단보도에서의 차량과 보행자 상호작용을 실시간으로 감지하는 시스템을 설계하였다. YOLOv5s 모델과 Deep SORT 방법을 이용하여 구간 속도 측정 및 객체 추적을 수행하고, 횡단보도 구역에서는 YOLOv5s 객체 탐지 모델을 활용하여 보행자와 차량을 구분하는 조건별 출력 시스템을 개발하여 실시간으로 구동이 됨을 검증하였다. 이 시스템은 저렴한 비용으로 일반 스마트폰 카메라나 화상용 카메라를 활용하여 설치할 수 있으며, 대학 캠퍼스뿐만 아니라 비슷한 문제 지역에 도입하여 차량과 보행자의 안전을 위한 해결 방안으로 기대된다.

Design of Path Prediction Smart Street Lighting System on the Internet of Things

  • Kim, Tae Yeun;Park, Nam Hong
    • 통합자연과학논문집
    • /
    • 제12권1호
    • /
    • pp.14-19
    • /
    • 2019
  • In this paper, we propose a system for controlling the brightness of street lights by predicting pedestrian paths, identifying the position of pedestrians with motion sensing sensors and obtaining motion vectors based on past walking directions, then predicting pedestrian paths through the route prediction smart street lighting system. In addition, by using motion vector data, the pre-treatment process using linear interpolation method and the fuzzy system and neural network system were designed in parallel structure to increase efficiency and the rough set was used to correct errors. It is expected that the system proposed in this paper will be effective in securing the safety of pedestrians and reducing light pollution and energy by predicting the path of pedestrians in the detection of movement of pedestrians and in conjunction with smart street lightings.

특징 벡터를 이용한 도로영상의 횡단보도 검출 (Crosswalk Detection using Feature Vectors in Road Images)

  • 이근모;박순용
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.217-227
    • /
    • 2017
  • Crosswalk detection is an important part of the Pedestrian Protection System in autonomous vehicles. Different methods of crosswalk detection have been introduced so far using crosswalk edge features, the distance between crosswalk blocks, laser scanning, Hough Transformation, and Fourier Transformation. However, most of these methods failed to detect crosswalks accurately, when they are damaged, faded away or partly occluded. Furthermore, these methods face difficulties when applying on real road environment where there are lot of vehicles. In this paper, we solve this problem by first using a region based binarization technique and x-axis histogram to detect the candidate crosswalk areas. Then, we apply Support Vector Machine (SVM) based classification method to decide whether the candidate areas contain a crosswalk or not. Experiment results prove that our method can detect crosswalks in different environment conditions with higher recognition rate even they are faded away or partly occluded.

Projected Local Binary Pattern based Two-Wheelers Detection using Adaboost Algorithm

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • 제1권2호
    • /
    • pp.119-126
    • /
    • 2014
  • We propose a bicycle detection system riding on people based on modified projected local binary pattern(PLBP) for vision based intelligent vehicles. Projection method has robustness for rotation invariant and reducing dimensionality for original image. The features of Local binary pattern(LBP) are fast to compute and simple to implement for object recognition and texture classification area. Moreover, We use uniform pattern to remove the noise. This paper suggests that modified LBP method and projection vector having different weighting values according to the local shape and area in the image. Also our system maintains the simplicity of evaluation of traditional formulation while being more discriminative. Our experimental results show that a bicycle and motorcycle riding on people detection system based on proposed PLBP features achieve higher detection accuracy rate than traditional features.

  • PDF

Iterative damage index method for structural health monitoring

  • You, Taesun;Gardoni, Paolo;Hurlebaus, Stefan
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.89-110
    • /
    • 2014
  • Structural Health Monitoring (SHM) is an effective alternative to conventional inspections which are time-consuming and subjective. SHM can detect damage early and reduce maintenance cost and thereby help reduce the likelihood of catastrophic structural events to infrastructure such as bridges. After reviewing the Damage Index Method (DIM), an Iterative Damage Index Method (IDIM) is proposed to improve the accuracy of damage detection. These two damage detection techniques are compared based on damage on two structures, a simply supported beam and a pedestrian bridge. Compared to the traditional damage detection algorithm, the proposed IDIM is shown to be less arbitrary and more accurate.

곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식 (Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG)

  • 이영학;고주영;석정희;노태문;심재창
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권6호
    • /
    • pp.654-662
    • /
    • 2010
  • 본 논문은 2단계 연속(cascade) 방법을 이용한 향상된 보행자/비보행자 인식 알고리즘을 제안한다. 인식을 위한 분류기로는 약한 분류기를 강한 분류기로 만드는 아다부스트 알고리즘을 적용하였다. 먼저 두 가지 특징벡터를 추출 한다: (i) 기존의 기울기 히스토그램(HOG) 특성과 (ii) 한 점이 가지는 곡률특성 네 가지를 이용한 곡률-HOG를 제안하고 이용하였다. 그 다음 훈련 영상을 통하여 두 가지의 특징 벡터에 대해 약한 분류기로부터 강한 분류기를 얻었으며, 인식은 입력 영상으로부터 하나의 특징을 선택하여 이미 만들어진 강한 분류기를 통하여 1차적인 인식과 오인식을 실시하며, 오인식된 영상에 대해 2차적인 특징을 투입하여 이에 해당하는 강한 분류기를 통하여 2단계 아다부스트 알고리즘을 적용하여 최종적인 인식결과를 얻는다. 두 가지의 서로 다른 특성 벡터를 이용하여 연속 방법에 의한 2단계 아다부스트 알고리즘을 적용한 결과 기존의 실험 방법보다 더 정확한 인식 결과를 얻을 수 있었다.

Map API를 활용한 최단 거리 알고리즘 기반 보행자 경로 탐색 연구 (Pedestrian path search based on the shortest distance algorithm using Map API)

  • 전성우;강복선;박영하;정회경
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.117-123
    • /
    • 2023
  • 여름철 집중적인 태풍이나 호우로 인해 침수 및 범람으로 인명 피해가 존재한다. 이러한 피해로 인해 제일 큰 재해는 홍수이며 인명 피해를 줄이기 위해 본 논문에서는 Map API를 활용한 최단 거리 알고리즘 기반 보행자 경로 탐색 연구를 제안한다. 본 시스템은 Map API를 비교분석을 통하여 선정하고 최단 경로를 제공한다. 탐색 된 경로는 JSON 형태와 대피소의 데이터를 데이터베이스에 저장한다. 이 데이터를 기반하여 설계 및 구현한 경로 탐색 시스템은 보행자의 위치를 파악하여 돌발 홍수 발생하였을 때 대피 경로를 제공한다. 또 대피 경로로 이동 중 진입하지 못하는 경로일 경우 보행자의 현재 위치를 파악하여 경로 재탐색하여 새로운 경로를 제공한다. 이에 본 논문에서 제안하는 보행자 경로 탐색 시스템은 안전사고에 예방할 것으로 사려된다.

비전 센서 기반의 사람 검출 및 계수 시스템 (Detecting and Counting People system based on Vision Sensor)

  • 박호식
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.1-5
    • /
    • 2013
  • 보행자의 수는 건물의 출입자 제어, 보행자 소통 관리, 지역 내 유동량 측정 등에 있어서 매우 중요하게 이용되는 정보이다. 그러나 기존의 사람 검출 및 계수 시스템은 겹침이나 그림자나 조명에 의한 부정확한 검출로 인하여 정확한 계수의 어려움이 있었다. 본 논문에서는 카메라로부터 영상을 입력받아 적응적으로 배경 영상을 생성하여 처리함으로써 조명의 변화나 그림자 영향을 최소화 하였다. 또한 Kalman 필터와 Mean-Shift 알고리즘을 이용하여 중복 계수를 방지하여 계수의 정확도를 높일 수 있었다. 실험 결과 95.4%의 계수 정확도를 나타내어 제안된 방법이 사람의 검출 및 계수에 효율적임을 증명하였다.

시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑 (3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind)

  • 윤명종;정구영;유기호
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.