• Title/Summary/Keyword: Pedestrian Algorithm

Search Result 167, Processing Time 0.026 seconds

An Indoor Pedestrian Simulation Model Incorporating the Visibility (가시성을 고려한 3차원 실내 보행자 시뮬레이션 모델)

  • Kwak, Su-Yeong;Nam, Hyun-Woo;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.133-142
    • /
    • 2010
  • Many pedestrian or fire evacuation models have been studied last decades for modeling evacuation behaviors or analysing building structures under emergency situations. However, currently developed models do not consider the differences of visibility of pedestrians by obstacles such as furniture, wall, etc. The visibility of pedestrians is considered one of the important factors that affect the evacuation behavior, leading to making simulation results more realistic. In order to incorporate pedestrian's visibility into evacuation simulation, we should be able to give different walking speeds according to differences of visibility. We improved the existing floor field model based on cellular automata in order to implement the visibility. Using the space syntax theory, we showed how we split the indoor spaces depending on the different visibilities created by different levels of structural depths. Then, we improved the algorithm such that pedestrians have different speeds instead of simultaneous movement to other cells. Also, in order for developing a real time simulation system integrated w ith indoor sensors later, we present a process to build a 3D simulator using a spatial DBMS. The proposed algorithm is tested using a campus building.

An Optimal Model for Indoor Pedestrian Evacuation considering the Entire Distribution of Building Pedestrians (건물내 전체 인원분포를 고려한 실내 보행자 최적 대피모형)

  • Kwak, Su-Yeong;Nam, Hyun-Woo;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.23-29
    • /
    • 2012
  • Existing pedestrian and evacuation models generally seek to find locally optimal solutions for the shortest or the least time paths to exits from individual locations considering pedestrian's characteristics (eg. speed, direction, sex, age, weight and size). These models are not designed to produce globally optimal solutions that reduce the total evacuation time of the entire pedestrians in a building when all of them evacuate at the same time. In this study, we suggest a globally optimal model for indoor pedestrian evacuation to minimize the total evacuation time of occupants in a building considering different distributions of them. We used the genetic algorithm, one of meta-heuristic techniques because minimizing the total evacuation time can not be easily solved by polynomial expressions. We found near-optimal evacuation path and time by expressing varying pedestrians distributions using chromosomes and repeatedly filtering solutions. In order to express and experiment our suggested algorithm, we used CA(cellular automata)-based simulator and applied to different indoor distributions and presented the results.

Pedestrian-Based Variational Bayesian Self-Calibration of Surveillance Cameras (보행자 기반의 변분 베이지안 감시 카메라 자가 보정)

  • Yim, Jong-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1060-1069
    • /
    • 2019
  • Pedestrian-based camera self-calibration methods are suitable for video surveillance systems since they do not require complex calibration devices or procedures. However, using arbitrary pedestrians as calibration targets may result in poor calibration accuracy due to the unknown height of each pedestrian. To solve this problem in the real surveillance environments, this paper proposes a novel Bayesian approach. By assuming known statistics on the height of pedestrians, we construct a probabilistic model that takes into account uncertainties in both the foot/head locations and the pedestrian heights, using foot-head homology. Since solving the model directly is infeasible, we use variational Bayesian inference, an approximate inference algorithm. Accordingly, this makes it possible to estimate the height of pedestrians and to obtain accurate camera parameters simultaneously. Experimental results show that the proposed algorithm is robust to noise and provides accurate confidence in the calibration.

Height Estimation of pedestrian based on image (영상기반 보행자 키 추정 방법)

  • Kim, Sung-Min;Song, Jong-Kwan;Yoon, Byung-Woo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1035-1042
    • /
    • 2014
  • Object recognition is one of the key technologies of the monitoring system for the prevention of various intelligent crimes. The height is one of the physical information of a person, and it may be important information for identification of the person. In this paper, a method which can detect pedestrians from CCTV images and estimate the height of the detected objects, is proposed. In this method, GMM (Gaussian Mixture Model) method was used to separate the moving object from the background and the pedestrian was detected using the conditions such as the width-height ratio and the size of the candidate objects. The proposed method was applied to the CCTV video, and the height of the pedestrian at far-distance, middle- distance, near-distance was estimated for the same person, and the accuracy was evaluated. Experimental results showed that the proposed method can estimate the height of the pedestrian as the accuracy of 97% for the short-range, 98% for the medium-range, and more than 97% for the far-range. The image sizes for the same pedestrian are different as the position of him in the image, it is shown that the proposed algorithm can estimate the height of pedestrian for various position effectively.

Implementation of the Electronic Sensor System for Pedestrian Safety Based on Embedded (임베디드 기반의 보행자 안전을 위한 전자감응시스템 구현)

  • Ryu, Seung-Han;Park, Sung-Won;Moon, Geon-Hee;Jung, Hoe-kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1825-1830
    • /
    • 2015
  • In some cases, despite the pedestrian jaywalking pedestrian traffic lights to red, or even wait for the walk signal to stand down in the driveway. If this is the case may be liable to lead to a traffic accident. Thus, using an infrared sensor wateuna adopted the approach that the warning announcement when a pedestrian enters the driveway, curved pedestrian crossing the intersection in this case, it is difficult to install. In this paper, we propose a Fitness referral system utilizes a built-in sensor of the Android mobile devices. For this purpose, the sensor is a proximity sensor using an acceleration sensor. The proximity sensor has a number of disadvantages compared to the high precision battery power, the acceleration sensor accuracy, fast response time, on the other hand, the disadvantage is the lower. Close to reduce battery consumption of the sensor, BMI of the user sensor control mechanism and increase the accuracy of the acceleration sensor (Body Mass Index) obtained after the index was applied to the recommendation algorithm, which like the movement mechanism.

Connectivity Management of a Pedestrian Smartphone App in the Cyber-Physical Intersection Systems (CPIS) (사이버-물리 교차로 시스템에서 보행자를 위한 스마트폰 앱의 연결성 관리)

  • Jeong, Han-You;Suramardhana, Tommy Adhyasa;Nguyen, Hoa-Hung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.578-589
    • /
    • 2014
  • In this paper, we introduce the concept of cyber-physical intersection systems (CPIS) which interconnects roadside units (RSU) located at the intersection, on-board units (OBU) of moving vehicles, and the smartphone apps, named the Smartphone Agent (SA). At the pedestrian mode of the SA, the connectivity management schemes, such as a location update and a handover control algorithm, are proposed to better support the CPIS services while minimizing the power consumption of the pedestrian's smartphone. We develop a real prototype of the CPIS, including RSU, OBU, and the SA. Based on the numerical results collected from a pedestrian moving around the Pusan National University campus, we validate that the proposed connectivity management schemes can improve not only the power efficiency of the pedestrian's smartphone, but also the quality of the CPIS services.

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Real-Time Correction Based on wheel Odometry to Improve Pedestrian Tracking Performance in Small Mobile Robot (소형 이동 로봇의 사람 추적 성능 개선을 위한 휠 오도메트리 기반 실시간 보정에 관한 연구)

  • Park, Jaehun;Ahn, Min Sung;Han, Jeakweon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.124-132
    • /
    • 2022
  • With growth in intelligence of mobile robots, interaction with humans is emerging as a very important issue for mobile robots and the pedestrian tracking technique following the designated person is adopted in many cases in a way that interacts with humans. Among the existing multi-object tracking techniques for pedestrian tracking, Simple Online and Realtime Tracking (SORT) is suitable for small mobile robots that require real-time processing while having limited computational performance. However, SORT fails to reflect changes in object detection values caused by the movement of the mobile robot, resulting in poor tracking performance. In order to solve this performance degradation, this paper proposes a more stable pedestrian tracking algorithm by correcting object tracking errors caused by robot movement in real time using wheel odometry information of a mobile robot and dynamically managing the survival period of the tracker that tracks the object. In addition, the experimental results show that the proposed methodology using data collected from actual mobile robots maintains real-time and has improved tracking accuracy with resistance to the movement of the mobile robot.

Exploring Smartphone-Based Indoor Navigation: A QR Code Assistance-Based Approach

  • Chirakkal, Vinjohn V;Park, Myungchul;Han, Dong Seog
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.173-182
    • /
    • 2015
  • A real-time, Indoor navigation systems utilize ultra-wide band (UWB), radio-frequency identification (RFID) and received signal strength (RSS) techniques that encompass WiFi, FM, mobile communications, and other similar technologies. These systems typically require surplus infrastructure for their implementation, which results in significantly increased costs and complexity. Therefore, as a solution to reduce the level of cost and complexity, an inertial measurement unit (IMU) and quick response (QR) codes are utilized in this paper to facilitate navigation with the assistance of a smartphone. The QR code helps to compensate for errors caused by the pedestrian dead reckoning (PDR) algorithm, thereby providing more accurate localization. The proposed algorithm having IMU in conjunction with QR code shows an accuracy of 0.64 m which is higher than existing indoor navigation techniques.