• 제목/요약/키워드: Peak pressure

Search Result 1,458, Processing Time 0.03 seconds

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

An Experimental Study of Pressure Variation in Pipe Flow according to Residual Air Condition (잔류공기조건에 따른 관 내 유동의 압력변화에 관한 실험적 연구)

  • Park, Jaegon;Lee, Kyungsu;Ko, Joo Suk;Lyu, Siwan
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • Sudden intrusion of a large amount of surface water into a flood defensive tunnel or pipeline system can compress the residual air. The compressed air may explode along with water through the inlet or air vent, resulting in hydraulic capacity degradation or safety hazards. This study aims to investigate the behavior of compressed air body in pipelines according to the residual air condition with a series of laboratory experiments measuring pressure variation. It has been found that flow characteristics and residual air conditions have a dominant influence on the magnitude and periodicity of the pressure variation. A proper measure to effectively control the residual air is required for securing the design capacity of flood defensive pipeline systems, since the peak pressure is predominantly affected by residual air conditions.

Comparative Study on the Pulse Wave Variables and Sasang Constitution in Cerebral Infarction Patients and Healthy Subjects (뇌경새(腦梗塞) 환자(患者)와 건강인(健康人)의 맥상(脈象)과 사상체질(四象體質)에 관(關)한 연구(硏究))

  • Ko, Ki-Duk;Kim, Kyung-Yo;Kim, Jong-Yeol;Lee, Si-Woo;Joo, Jong-Cheon
    • Journal of Pharmacopuncture
    • /
    • v.10 no.2 s.23
    • /
    • pp.119-132
    • /
    • 2007
  • This study was performed to determine whether a pulse analyzer was useful 1) to characterize the variables of pulse wave of cerebral infarction patieno (CI), compared with those of healthy subjects, as well as 2) to determine Sasang Constitution in CI and healthy subjects. 1. Calibrated in Gwan, the amount of energy(Energy), height of main peak(H1), height of aorticvalley(H2), height of aortic peak(H3), total area of pulse wave(At), and area of main peak width(Aw) of the CI group were higher than those of the healthy group. 2. Calibrated in Cheek, Energy, H1, H2, H3, height of valve valley(H4), At, Aw, and main peak angle(MPA) of the CI group were higher than those of the healthy group. 3. Among the healthy (subjects) group, Taeumin showed the highest contact pressure(CP) and height of valve peak(H5) calibrated in Chon. The main peak width divided by whole time of pulse wave(MPW/T) calibrated in Gwan and Cheok, was highest in Soyangin and was lowest in Taeumin. The H3 divided by H1(H3/H1) and the time to valve valley minus the time to main peak and divided by T[(T4-T1)/T] calibrated in Cheek were highest in Soyangin. The time to main peak(T1) was longest in Soumin. 4. Among the CI group, At calibrated in Chon was widest in Taeumin and was narrowest in Soumin The time to aortic peak(T3) calibrated in Cheek was longest in Soumin and was shortest in Soyangin. The time to valve peak(T5) was shortest in Soyangin. 5. There were main effects of cerebral infarction in the area of systolic period(As) and area of diastolic period(Ad) calibrated in Chon, Energy calibrated in Cwan, and Energy, H1, H2, H3, (H4+H5)/Hl, and MPA calibrated in Cheek. 6. There were main effects of Sasang Constitution in (T4-T1)/T, area of systolic period(As), and Ad calibrated in Chon. 7. The interactions between the cerebral infarction and Sasang Constitution were observed in H5/H1 , T, At, As, Ad, and MPA calibrated in Chon, H4, T4, (T4-T1)/T, As, and Ad calibrated in Cwan, and 74,75, and MPW calibrated in Cheok. Therefore, we concluded that pulse analyzer was useful to determine the risk degree of cerebral infarction and Sasang Constitution.

Vibration of Contact Lenses (콘택트 렌즈의 진동에 관한 연구)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.13-29
    • /
    • 2001
  • A mathematical model was proposed to analyze the vibration of diaphragm, such as the contact lenses fitted on the eyes, being subjected to the external sinusoidal pressure. The model incorporates the differential equations and their numerical solution program, based on the wave equations. Turbo-C and graphic software, formulated to describe the dependence of the various parameters involved in the vibration. The model predicts the radial distribution of amplitude, frequency dependence of both average displacement amplitude and the power of diaphragm whose edge is being either simply supported or rigidly clamped in vibration. The effect of variables such as thickness, radius, damping coefficients on the vibration characteristics was illustrated by the computer simulation of the derived program. As the frequency of driving pressure increases above the certain value determined by the boundary conditions and parameters the wave shape or pattern changes from simple arc to belly or loops having double antinode. It seems that the effect of outer antinode progressively increases as the frequency increases. If this kind of phenomena occurs to the contact lens on the cornea in vivo, it may cause an abnormal correction power in the lenses or pull off the eye due the increased rise of outer part of the lens.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

NUMERICAL STUDY WITH VENT SHAFT POSITION IN UNDERGROUND STATION (대심도 지하정거장에서 수직구 위치에 따른 수치적 연구)

  • Oh, Hyun-Joo;Shin, Dea-Yong;Lee, Sang-Gun;Kim, Dong-Hyun;Kim, Charn-Jung
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • When a high-speed train passes an underground station, large pressure waves are generated due to the piston effect. These pressure waves can cause the problems of vibration and noise as well as the ear discomfort of passengers at the underground station. This work numerically analyzed the pressure wave generation and propagation in an high-speed railway underground station, and the optimal location for vent shafts was studied to improve the passenger comfort by reducing the magnitude of the pressure wave and its rate of change. The evolution of pressure field in the underground station was calculated using a CFD(Computational Fluid Dynamics) software(Fluent), where the axis-symmetric two-dimensional model verified by Wu was used. And this study is applied to modelling of the underground station and the tunnel from Daegok station A-line of GTX(Great Train Express). From the result, we can have a conclusion that the role of vent shafts respectively were different according to the position in and out the underground station. Also Vent shaft in the underground station widely reduced pressure magnitude. And vent shaft out underground station reduced initial pressure peak value. Double vent shafts installed at tunnel toward station entrance and inside of the tunnel are the most efficient to reduce pressure. and pressure reduction increases according to the number of vent shaft.

The Study on Intraoral Pressure, Closure Duration and VOT During Phonation of Korean Bilabial Stop Consonants (한국어 양순 파열음 발음시 구강내압과 폐쇄기, VOT에 대한 연구)

  • 표화영;최홍식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.7 no.1
    • /
    • pp.50-55
    • /
    • 1996
  • Acoustic analysis study was performed on 20 normal subjects by speaking nonsense syllables composed of Korean bilabial stops$(/P, P^{\star}, P^{h}/)$ and their preceding and/or following vowel /a/ (that is, $[pa, p^{\star}a, p^{h}a, apa, ap^{\star}a, ap^{h}a]$) with an ultraminiature pressure, sensor. in their mouths. Speech materials were phonated twice, once with a moderate voice, another time with a loud voice. The acoustic signal and intraoral pressure were recorded simultaneously on computer. By these procedures, we were to measure the intraoral pressure, closure duration and VOT of Korean bilabial stops, and to compare the values one another according to the intensity of phonation and the position of the target consonants. Intraoral pressure was measured by the peak intraoral pressure value of Its wave closure duration by the time interval between the onset of intraoral pressure build-up and the burst meaning the release of closure ; Voice onset time(VOT) on by the time interval between the burst and the onset or glottal vibration. Heavily aspirated bilabial stop consonant /$p^h$/ showed the highest intraoral pressure value, unaspirated /$p^{\star}$/, the second, slightly aspirated /P/, the lowest. The syllable initial bilabial stops showed higher intraoral pressure than word initial stops, and the value of loudly phonated consonants were higher than moderate consonants. The longest closure duration period was that of /$p^{\star}$/ and the shortest, /P/, and the duration was longer in word initial position and in the moderate voice. In VOT, the order of the longest to shortest was $/{p^h}/, /p/, /{p^\star}/$, and the value was shorer when the consonant was in intervocalic position and when it was phonated with a loud voice.

  • PDF

Mechanical properties of tailings with dipping interlayers under high confining pressure

  • Qinglin, Chen;Zugui, Li;Zeyu, Dai;Xiaojun, Wang;Chao, Zhang
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.557-571
    • /
    • 2022
  • Landslides are often triggered by weak interlayers initiated in tailings dam foundations, and hazards gradually occur. This is serious for landslides in high tailings dams due to their high potential energy. Tailing samples with a fine-grained interlayer at a set dip angle were prepared. Consolidated undrained (CU) triaxial shear tests were carried out by using a high-pressure triaxial apparatus. The results were compared with the results under a low confining pressure. Four reasons were summarized for high tailings dams more prone to instability than low dams. The shear strength of the samples with dipping interlayers decreases with increasing dip angle. An obvious straight drop in the stress path after the peak occurs in samples with dipping interlayers at an angle of 60°. The effect of the interlayer on the mechanical behaviour of tailings is very sensitive, especially for the sample with a dipping interlayer at an angle of 60°. Shear slipping along the interlayer should be given more attention in tailings dams. Compared with the results under low confining pressure, the stress decreases continuously for the samples with dipping interlayers at large angles under high confining pressure. The positive pore pressure, which reduces the effective stress, occurred in tailings samples under high confining pressure. The residual strength of tailings under high confining pressure is smaller than that under low confining pressure. These factors increase the dam break risk and the disaster impact for high tailings dams.

Behavior of ultrasonic transducer in air by using finite element method simulation (FEM 시뮬레이션을 이용한 공기 중에서의 초음파 트랜스듀서의 거동)

  • Chae, Yeon-Hwa;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.185-190
    • /
    • 2018
  • The Tonpilz transducer was implemented using the structural module of COMSOL which is a FEM simulation tool. In order to compare the sound pressure characteristics of the transducer with the simulated results, the spacial distribution of the sound pressure level (SPL) was simulated by the acoustic module of COMSOL and then compared with the SPL distribution measured by a microphone. As a result, the resonance frequency and the peak in SPL for the simulation were predicted to be 28 kHz and 163.5 dB, respectively. And the resonance frequency and the peak in SPL for the actual transducer were measured to be 28.84 kHz and 137.8 dB, respectively. It is also confirmed that the simulated SPL distribution and the actually measured one are formed in a similar pattern.