• Title/Summary/Keyword: Peak pressure

Search Result 1,452, Processing Time 0.025 seconds

Wind Pressure Spectra for Circular Closed and Open Dome Roofs (원형 밀폐 및 개방형 돔 지붕의 풍압 스펙트럼)

  • Cheon, Dong-jin;Kim, Yong-Chul;Lee, Jong-Ho;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • Wind tunnel tests were conducted to analyze the wind fluctuating pressures on a circular closed and open dome roof with a low span rise. Two dome models with various geometric parameters (height/span ratios and open ratios) were used for fixed span rise ratio dome and wind pressure spectrum were analyzed. The applicability was examined in comparison with the spectral model proposed in the previous studies. The analysis results show that the wind pressure spectrum of open dome roof tends to increase power in the high frequency range and the second peak is found in the area different from the closed dome roof. In addition, according to the comparison analysis with the previous proposed spectral model, it was found that it is not applicable to the closed and open dome roofs with low rise ratio due to the different peak frequencies.

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma

  • Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.246-252
    • /
    • 2002
  • Two-dimensional steady state simulations of planar type radio frequency inductively coupled plasma (RFICP) have been performed. The characteristics of RFICP were investigated in terms of power transfer efficiency, equivalent circuit analysis, spatial distribution of plasma density and electron temperature. Plasma density and electron temperature were determined from the equations of ambipolar diffusion and energy conservation. Joule heating, ionization, excitation and elastic collision loss were included as the source terms of the electron energy equation. The electromagnetic field was calculated from the vector potential formulation of ampere's law. The peak electron temperature decreases from about 4eV to 2eV as pressure increases from 5 mTorr to 100 mTorr. The peak density increases with increasing pressure. Electron temperatures at the center of the chamber are almost independent of input power and electron densities linearly increase with power level. The results agree well with theoretical analysis and experimental results. A single turn, edge feeding antenna configuration shows better density uniformity than a four-turn antenna system at relatively low pressure conditions. The thickness of the dielectric window should be minimized to reduce power loss. The equivalent resistance of the system increases with both power and pressure, which reflects the improvement of power transfer efficiency.

The Research about Free Piston Linear Engine Fueled with Hydrogen using Numerical Analysis (수소를 연료로 사용한 프리피스톤 리니어 엔진의 수치해석에 관한 연구)

  • Nguyen, Ba Hung;Oh, Yong-Il;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.162-172
    • /
    • 2012
  • This paper presents a research about free piston linear engine (FPLE) fueled with hydrogen, in which, the numerical models are built to simulate the operation during the full stroke of the engine. Dynamic model, linear alternator model and thermodynamic model are used as the numerical models to predict piston velocity, in-cylinder pressure and electric power of FPLE. The spark timing and air gap length are changed to provide information for the prediction. Beside, the heat transfer problem is also investigated in the paper. The results of research are divided by two parts, including motoring mode and firing mode. The result of motoring mode showed that there is validation between simulation and experiment for volume and pressure in cylinder. For firing mode, by increasing spark timing, the velocity of piston, peak pressure and electric power also increase respectively. Beside, when increasing air gap length, the electric power increases accordingly while the motion of piston is not symmetric. The effect of heat transfer also observed clearly by reducing of the peak pressure, velocity of piston and electric power.

Effect of stem design on contact pressure distribution of end-of-stem in revision TKR (슬관절 재전치환술용 경골삽입물 형상이 접촉압력 분포에 미치는 영향)

  • Kim Y.H.;Koo K.M.;Kwon O.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.179-180
    • /
    • 2006
  • In this study, the effect of stem-end design on contact pressure and stress distribution in revision TKR was investigated using finite element method. The finite element model of tibia, including the cortical bone, the cancellous bone and canal, was developed based on CT images. The stem models with various stem lengths, diameters and frictional coefficients, and press-fit effects were considered. The results showed that the longer stem length, the stronger press-fit, the bigger stem diameter, and the higher frictional coefficient increased both peak contact pressure and the highest Von-Mises stress values. We hypothesized that peak contact pressure and Von-Mises stress distribution around the stem, may be related to the stem end pain. The results of this study will be useful to design the stem endand reduce the end-of-stem pain in revision TKR.

  • PDF

The Analysis of Fluid Pressure in Polybutylene Piping System (PB 배관에서의 유체압력에 관한 연구)

  • Lee Yong-Hwa
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene piping system. Experiments were conducted under the following conditions: initial pressure $1\~5$ bar, flow velocity $\~0.5-3.0m/s$ and water temperature $25^{\circ}C$. Results indicated that the peak pressure generated by quick valve closure reached Joukowsky's value. We also found that the maximum pressure rise and the pressure history depended on not only initial steady pressure but also flow velocity.

Effect of Pressure on Acoustic Pressure Response and NO Formation in Diluted Hydrogen-Air Diffusion Flames (희석된 수소-공기 확산 화염에서 음향파 응답과 NO 생성에 미치는 압력의 영향)

  • Sohn, Chae-Hoon;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.11-20
    • /
    • 1999
  • Acoustic pressure response and NO formation of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such non-monotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. Acoustic pressure response in each regime is investigated based on the Rayleigh criterion. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted. Emission index of NO shows similar behaviors as to the peak-temperature variation with pressure.

  • PDF

Effects of small tidal volume and positive end-expiratory pressure on oxygenation in pressure-controlled ventilation-volume guaranteed mode during one-lung ventilation

  • Byun, Sung Hye;Lee, So Young;Jung, Jin Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.2
    • /
    • pp.165-170
    • /
    • 2018
  • Background: The purpose of this study was to investigate whether tidal volume (TV) of 8 mL/kg without positive end-expiratory pressure (PEEP) and TV of 6 mL/kg with or without PEEP in pressure-controlled ventilation-volume guaranteed (PCV-VG) mode can maintain arterial oxygenation and decrease inspiratory airway pressure effectively during one-lung ventilation (OLV). Methods: The study enrolled 27 patients undergoing thoracic surgery. All patients were ventilated with PCV-VG mode. During OLV, patients were initially ventilated with TV 8 mL/kg (group TV8) without PEEP. Ventilation was subsequently changed to TV 6 mL/kg with PEEP ($5cmH_2O$; group TV6+PEEP) or without (group TV6) in random sequence. Peak inspiratory pressure ($P_{peak}$), mean airway pressure ($P_{mean}$), and arterial blood gas analysis were measured 30 min after changing ventilator settings. Ventilation was then changed once more to add or eliminate PEEP ($5cmH_2O$), while maintaining TV 6 mL/kg. Thirty min after changing ventilator settings, the same parameters were measured once more. Results: The $P_{peak}$ was significantly lower in group TV6 ($19.3{\pm}3.3cmH_2O$) than in group TV8 ($21.8{\pm}3.1cmH_2O$) and group TV6+PEEP ($20.1{\pm}3.4cmH_2O$). $PaO_2$ was significantly higher in group TV8 ($242.5{\pm}111.4mmHg$) than in group TV6 ($202.1{\pm}101.3mmHg$) (p=0.044). There was no significant difference in $PaO_2$ between group TV8 and group TV6+PEEP ($226.8{\pm}121.1mmHg$). However, three patients in group TV6 were dropped from the study because $PaO_2$ was lower than 80 mmHg after ventilation. Conclusion: It is postulated that TV 8 mL/kg without PEEP or TV 6 mL/kg with $5cmH_2O$ PEEP in PCV-VG mode during OLV can safely maintain adequate oxygenation.

The Effects of Respiratory Muscle Training on Respiratory Function, Respiratory Muscle Strength, and Cough Capacity in Stroke Patients (호흡근 강화 훈련이 뇌졸중 환자의 호흡기능, 호흡근력과 기침능력에 미치는 영향)

  • Jo, Myeong-Rae;Kim, Nan-Soo;Jung, Ju-Hyeon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.4
    • /
    • pp.399-406
    • /
    • 2014
  • PURPOSE: The purpose of this study was to examine the effects of respiratory muscle training on respiratory function, respiratory muscle strength, and cough capacity in stroke patients. METHODS: This study used a nonequivalent control group pre-post test design. We recruited thirty-four stroke patients(16male, 18female), who were assigned to intervention (n=17), or control (n=17) groups. Both groups participated in a conventional stroke rehabilitation program, with the intervention groups also receiving respiratory muscle training 20 minutes a day, three times a week, for 4 weeks. Respiratory function (forced vital capacity) and respiratory muscle strength (maximal inspiratory pressure, maximal expiratory pressure) were assessed by spirometry. Cough capacity (peak expiratory flow) was assessed using a peak flow meter. The collected data were analyzed by independent and paired t-tests. RESULTS: The intervention group showed a significant increase in the forced vital capacity (FVC), maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP) and peak expiratory flow (PEF) at the end of the program, while the control group showed no significant changes. CONCLUSION: This study showed that respiratory muscle training increased respiratory function, respiratory muscle strength, and cough capacity in stroke patients and prevented a decrease in cough capacity. These findings suggest that respiratory muscle training effect on respiratory function, respiratory muscle strength and cough capacity for rehabilitation in patients with stroke.

A Study on Uncertainty and Sensitivity of Operational and Modelling Parameters for Feedwater Line Break Analysis (급수관 파열사고 해석에 대한 운전변수와 모형변수의 불확실성 및 민감도 연구)

  • Lee, Seung-Hyuk;Kim, Jin-Soo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.10-21
    • /
    • 1987
  • Uncertainty analysis of the FLB accident is performed for KNU-1 using the response surface methodology and Monte Carlo simulation. The FLB analyses using the RELAP4/Mod6 were performed a number of times to generate the data base for the uncertainty analysis, along with the EM calculation for comparison purpose. Two kinds of input sets are utilized for response surface method to investigate and compare the effects of the uncertainty of input variables on the RCS peak pressure following a FLB. The first set is composed of six major plant operational parameters and the second set is composed of five major modelling parameters. It is found through the analysis of results that the uncertainties of modelling parameters have more influence on the RCS peak pressure than the uncertainties of plant operational parameters and that the extra margin of 9% of peak pressure is gained. And one of the assumptions of EM calculation, which is usually accepted as conservative is found to be erroneous, that is, the initial core inlet temperature is found to act negatively on the RCS pressure following a FLB.

  • PDF