• 제목/요약/키워드: Peak load reduction

검색결과 111건 처리시간 0.031초

건물의 외주부 존에 대한 동적 부하모델 이용 피크냉방부하 저감효과 분석 (Evaluation on Reducing Peak Cooling Load Based on Dynamic Load Model of Building Perimeter Zones)

  • 이경호
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, inverse building modeling was applied to building perimeter zones which have different window orientation. Two test zones of east-facing and west-facing zones in ERS(Energy Resource Station) building, which is representative of small commercial building, was used to test performance of cooling load calculation and peak cooling load reduction. The dynamic thermal load model for the east and west zone was validated using measured data for the zones and then it was used to investigate the effect of peak cooling load reduction by adjustment of indoor cooling temperature set points during on-peak time period. For the east zone, the peak load can be reduced to about 60% of the peak load for conventional control even without any precooling. For the west zone, PLR is nearly independent of the start of the on-peak period until a start time of 1pm. Furthermore, PLR has a small dependence on the precooling duration. Without any precooling, the peak cooling load can be reduced to about 35% of the peak load associated with conventional control.

건물냉난방설비관련 전력피크관리사업 지원방안 연구 (The research on supporting method of electric peak management for building facilities of heating and cooling)

  • 양승권;이한별
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 추계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2008
  • This paper gives the support method of DSM program(power load leveling for heating and cooling facilities on building). As the national power peak load increases recently, the peak load reduction is needed. So we studied about remote controlling of power load from heating/cooling facilities on building during peak times. To adopt new DSM program, it is very important to design DSM customer supporting system. So in this paper, we dealt with the result of customer survey, and the DSM potential regarding heating/cooling facilities on building. In conclusion, the peak reduction program of heating/cooling facilities is very important and the incentive of customer should be consist of two incentive types as an installation and power reduction.

  • PDF

전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법 (Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff)

  • 박명우;강모세;윤용운;홍선리;배국열;백종복
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.388-398
    • /
    • 2021
  • 본 논문에서는 전기요금 절감용 ESS를 활용한 Particle swarm optimization(PSO) 기반 Peak shaving 제어 방법을 제안한다. 제안한 방식은 실제 부하와 예상되는 부하의 소비를 비교하여 피크 절감을 위해 ESS의 추가 유효전력값을 계산하여 입력을 더한다. 또한 추가로 증가시킨 유효전력을 보상하기 위해, 유효전력을 할당하는 과정을 수행하며 유효전력 할당치가 피크 부하에 영향을 주지 않도록 유효전력 할당 지점에 예상되는 부하의 평균을 최소화하는 최적화 해를 PSO를 통해 찾는다. 제안한 방식의 성능 검증을 위해 실제 부하 데이터와 예측 알고리즘을 반영하여 예측 오차가 적은 경우와 큰 경우의 사례 연구를 수행하였다. 사례 연구 수행 결과 제안한 방식을 전기요금 절감을 위한 충·방전 제어 방식과 같이 수행한 경우 예측 오차가 큰 경우에도 성공적으로 피크 부하 절감을 수행하였으며, 17.8%의 피크 부하 절감 효과와 6.02%의 전기요금 절감 효과를 보였다.

Economic Evaluation of ESS in Urban Railway Substation for Peak Load Shaving Based on Net Present Value

  • Park, Jong-young;Heo, Jae-Haeng;Shin, Seungkwon;Kim, Hyungchul
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.981-987
    • /
    • 2017
  • In this paper, we estimate the economic benefits of Energy Storage Systems (ESSs) for peak load shaving in an urban railway substation using the annual cost. The annual investment cost of ESSs is estimated using Net Present Value (NPV) and compared with the cost reduction of electricity by the ESS. The optimal capacities of the battery and Power Converting System (PCS) are determined for peak load shaving. The optimal capacity of the ESS and the peak load shaving is determined to maximize the profit by the ESS. The proposed method was applied to real load data in an urban railway substation, and the results show that electric power costs can be reduced. Other aspects of the ESS, such as the lifetime and unit price of the battery, are also investigated economically.

An Analysis on Power Demand Reduction Effects of Demand Response Systems in the Smart Grid Environment in Korea

  • Won, Jong-Ryul;Song, Kyung-Bin
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1296-1304
    • /
    • 2013
  • This study performed an analysis on power demand reduction effects exhibited by demand response programs, which are advanced from traditional demand-side management programs, in the smart grid environment. The target demand response systems for the analysis included incentive-based load control systems (2 month-ahead demand control system, 1~5 days ahead demand control system, and demand bidding system), which are currently implemented in Korea, and price-based demand response systems (mainly critical peak pricing system or real-time pricing system, currently not implemented, but representative demand response systems). Firstly, the status of the above systems at home and abroad was briefly examined. Next, energy saving effects and peak demand reduction effects of implementing the critical peak or real-time pricing systems, which are price-based demand response systems, and the existing incentive-based load control systems were estimated.

도심 오피스건물의 옥상녹화 조성 유형별 건물에너지 절감 비교 연구 (Comparative of Energy-Saving by Green Roof Type on Urban Office Building)

  • 김정호;권기욱;주창훈;윤용한
    • 한국환경과학회지
    • /
    • 제23권8호
    • /
    • pp.1437-1446
    • /
    • 2014
  • This study, the urban energy used office building green roof type composition of the target by analyze building energy reductions. Green roof is total 6 types(type A~F) were selected, EnergyPlus the energy simulation programs were used. Top floor of green roof types evaluation, the reduction of the cooling peak load type E(1.26%), type D(1.30%), type C(1.37%), type B(1.45%), type F(1.49%), and heating peak load is type D(1.32%), type E(1.40%), type C(1.47%), type F(1.69%), type B(2.13%) order. Annual cooling load of heating load is reduced more than about 1% effect. The heating load reduction ratio for a maximum of 9% respectively. Cooling peak load of the building energy performance evaluation of type F > type B > type C > type D > type E in the order and in the case of peak loads heating type B > type F > type D > type E>type C order. Annual total energy use reduction of 1.07 to 1.22% and earn, type B in the best good. In primary energy use reductions in the presence of a green roof were in the 4249~4876 kWh/yr. Annual $CO_2$ emissions reductions of unapplied type A were analyzed on average 469.78 kg.

도시철도 시스템 전기요금 절감을 위한 혼합정수계획법 기반 ESS(에너지저장장치) 스케줄링 기법 (Mixed Integer Programming (MIP)-based Energy Storage System Scheduling Method for Reducing the Electricity Purchasing Cost in an Urban Railroad System)

  • 고락경;공성배;주성관
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1125-1129
    • /
    • 2015
  • Increasing peak load is one of the major concerns about operation of urban railroad systems. Since ESSs (Energy Storage Systems) have a great potential for shaving the peak load, there has been a growing interest in the use of ESS for peak load reduction. Also, ESS can be optimally scheduled to minimize the electricity purchasing cost under a given ToU (Time-of-Use) tariff by taking advantage of electricity price difference between peak and off-peak time. This paper presents a Mixed Integer Programming (MIP)-based ESS scheduling method to minimize the electricity purchasing cost under a ToU tariff for an urban railroad system.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

부하관리 요금제 피크억제량 산정 개선방안 연구 (An Evaluation of Peak-Load Management in DSM Programs)

  • 김진호;홍준희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.572-573
    • /
    • 2008
  • Demand side management can be defined as series of planning and programs to change the electric usage pattern of customers from their normal ones with a least cost while meeting customers electric demand. In general, conventional demand side management programs can be classified into two groups, one of which is a load management and the other is energy efficiency. In this paper, the load management tariff programs in Korea are explored in terms of their effect on the peak demand reduction.

  • PDF

확산 Markov 프로세스 모델을 이용한 Queueing System 기반 지능 부하관리에 관한 연구 (A Study on the Intelligent Load Management System Based on Queue with Diffusion Markov Process Model)

  • 김경동;김석현;이승철
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.891-897
    • /
    • 2009
  • This paper presents a novel load management technique that can lower the peak demand caused by package airconditioner loads in large apartment complex. An intelligent hierarchical load management system composed of a Central Intelligent Management System(CIMS) and multiple Local Intelligent Management Systems(LIMS) is proposed to implement the proposed technique. Once the required amount of the power reduction is set, CIMS issues tokens, which can be used by each LIMS as a right to turn on the airconditioner. CIMS creates and maintains a queue for fair and proper allocation of the tokens among the LIMS requesting tokens. By adjusting the number tokens and queue management policies, desired power reduction can be achieved smoothly. The Markov Birth and Death process and the Balance Equations utilizing the Diffusion Model are employed for evaluation of queue performances during transient periods until the static balances among the states are achieved. The proposed technique is tested using a summer load data of a large apartment complex and give promising results demonstrating the usability in load management while minimizing the customer inconveniences.