• Title/Summary/Keyword: Peak ground acceleration

Search Result 291, Processing Time 0.033 seconds

Evaluation of Capacity Spectrum Methods for Seismic Fragility Analysis of Bridges (교량의 지진 취약도 해석 시 사용되는 성능 스펙트럼 기법의 평가)

  • Kim, Sang-Hoon;Yi, Jin-Hak;Kim, Ho-Kyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • This study presents the evaluation of CSM(Capacity Spectrum Method, ATC-40) in developing fragility curves for a sample concrete bridge. The CSM is originally developed as one of the simplified procedures for building structures, while this study adopts the CSM to develop fragility curves of bridge structures. Four(4) different approaches are demonstrated and the fragility curves developed are compared those by the nonlinear time history analysis. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. The sixty(60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agency (FEMA) SAC(SEAOC-ATC-CUREe) steel project are used for the bridge analysis. The comparison of fragility curves by the CSM with those by the time history analysis indicates that the agreement is excellent for one of the methods investigated in this study. In this respect. it is recommended that the demand spectrum might be improved according to the guidelines suggested in this study. However, this observation might not always apply, depending on the details of specific bridge characteristic

Uniform Hazard Spectra of 5 Major Cities in Korea (국내 5개 주요 도시에 대한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Wee, Soung-Hoon;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.37 no.3
    • /
    • pp.162-172
    • /
    • 2016
  • Since the Northridge earthquake in 1994 and the Kobe earthquake in 1995 occurred, the concept of performance based design has been introduced for designing various kinds of important structures and buildings. Uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level of each structure, are required for performance-based design. The probabilistic seismic hazard analysis was performed using spectral ground motion prediction equations, which were developed from both Korean Peninsula and Central and Eastern US region, and several seismotectonic models suggested by 10 expert panel members in seismology and tectonics. The uniform hazard spectra for 5 highly populated cities in Korea, with recurrence period of 500, 1,000, and 2,500 years using the seismic hazard at the frequencies of 0.5, 1.0, 2.0, 5.0, 10.0 Hz and Peak ground acceleration (PGA) were analyzed using the probabilistic seismic hazard analysis. The sensitivity analysis suggests that spectral ground motion prediction equations impact much more on seismic hazard than what seismotectonic models do. The uniform hazard spectra commonly showed a maximum hazard at the frequency of 10 Hz and also showed the similar shape characteristics to the previous study and related technical guides to nuclear facilities.

Seismic structural demands and inelastic deformation ratios: a theoretical approach

  • Chikh, Benazouz;Mebarki, Ahmed;Laouami, Nacer;Leblouba, Moussa;Mehani, Youcef;Hadid, Mohamed;Kibboua, Abderrahmane;Benouar, Djilali
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation ratio which is usually developed for systems with known ductility factors ($C_{\mu}$) and ($C_R$) for known yield-strength reduction factor. The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both $C_{\mu}$ and $C_R$ effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak ground acceleration. This new inelastic deformation ratio ($C_{\eta}$) is describes the response spectra and is related to the capacity curve (pushover curve): normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), natural period (T), peak ductility factor (${\mu}$), and the yield strength reduction factor ($R_y$). For illustrative purposes, instantaneous ductility demand and yield strength reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), and natural period (T). Though the ductility demand and yield strength reduction factor differ greatly for some given T and ${\eta}$ ranges, they remain take close when ${\eta}>1$, whereas they are equal to 1 for periods $T{\geq}1s$.

Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope (Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

Measurements and Data Processing for Blast Vibrations and Air-blasts (발파진동 및 발파소음의 측정 및 자료처리)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.29-50
    • /
    • 2015
  • Safe blast criteria based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of blast vibrations. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). In contrast to SRSD scheme, however, the function of maximum charge per delay for CRSD increases without bound after the intersection point of these two functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, it is suggested that CRSD be used within a specified distance slightly beyond the intersection point. On the other hand, there are several attempts that predict vibration level(VL) from the peak particle velocity(PPV) or estimate VL based on the scaled distances without considering their frequency spectra. It appears that these attempts are conducted in blasting contracts only for the purpose of satisfying the environment-related law, which mainly deals with the annoyance aspects of noises and vibrations in human life. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only between the waves with the same or very similar frequency spectra. Finally, it is a known fact that structural damage due to ground vibration is related to PPV level, the safety level criteria for structures should be defined by allowable PPV levels together with their zero crossing frequencies (ZCF).

Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models

  • Chikh, Benazouz;Laouami, Nacer;Mebarki, Ahmed;Leblouba, Moussa;Mehani, Youcef;Kibboua, Abderrahmane;Hadid, Mohamed;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • Modern seismic codes rely on performance-based seismic design methodology which requires that the structures withstand inelastic deformation. Many studies have focused on the inelastic deformation ratio evaluation (ratio between the inelastic and elastic maximum lateral displacement demands) for various inelastic spectra. This paper investigates the inelastic response spectra through the ductility demand ${\mu}$, the yield strength reduction factor $R_y$, and the inelastic deformation ratio. They depend on the vibration period T, the post-to-preyield stiffness ratio ${\alpha}$, the peak ground acceleration (PGA), and the normalized yield strength coefficient ${\eta}$ (ratio of yield strength coefficient divided by the PGA). A new inelastic deformation ratio $C_{\eta}$ is defined; it is related to the capacity curve (pushover curve) through the coefficient (${\eta}$) and the ratio (${\alpha}$) that are used as control parameters. A set of 140 real ground motions is selected. The structures are bilinear inelastic single degree of freedom systems (SDOF). The sensitivity of the resulting inelastic deformation ratio mean values is discussed for different levels of normalized yield strength coefficient. The influence of vibration period T, post-to-preyield stiffness ratio ${\alpha}$, normalized yield strength coefficient ${\eta}$, earthquake magnitude, ruptures distance (i.e., to fault rupture) and site conditions is also investigated. A regression analysis leads to simplified expressions of this inelastic deformation ratio. These simplified equations estimate the inelastic deformation ratio for structures, which is a key parameter for design or evaluation. The results show that, for a given level of normalized yield strength coefficient, these inelastic displacement ratios become non sensitive to none of the rupture distance, the earthquake magnitude or the site class. Furthermore, they show that the post-to-preyield stiffness has a negligible effect on the inelastic deformation ratio if the normalized yield strength coefficient is greater than unity.

Characteristics of Vertical/Horizontal Ratio of Response Spectrum from Domestic Ground Motions (국내 관측자료를 이용한 응답스펙트럼의 수직/수평비 특성 분석)

  • Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2011
  • The characteristics of vertical to horizontal ratio of response spectrum from 20 recent earthquakes were analysed. Response spectrum of 260 horizontal and 130 vertical ground motions were normalized by peak ground acceleration at each resonance frequency from 0.1 to 50Hz. It has been identified that the ratio of vertical to horizontal response spectrum has strong dependancy on epicentral distance and resonance frequency. The ratio of vertical to horizontal response spectrum for the 0-50km epicentral distance group are larger than 2/3 values, which is a standard engineering rule-of-thumb V/H=2/3, at resonance frequency above 7-8Hz. All the 3 groups such as 50-100, 100-150- and 150-200km epicentral distance have shown larger values of vertical to horizontal ratio than 2/3 at resonance frequency above 15Hz and also are larger than 2/3 at resonance frequency below 8-10Hz. Even though there are differences in specific resonance frequency values which depend on the epicentral distance group, we should be careful of seismic design of vertical component of the structures winch are located within the range of about 200km distance. form the potentially seismic causative faults.

A Shaking Table Test for Equipment Isolation in the NPP (II): FPS (원전기기의 면진을 위한 진동대 실험 II : FPS)

  • Kim, Min-Kyu;ZChoun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.79-89
    • /
    • 2004
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The purpose of this study is enhancement of seismic safety of equipment in the Nuclear Power Plant. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. As a result, these are founded that the vertical motion of seismic wave affect to the base isolation and the isolation effect decreased in case of near fault earthquake motion.

Detection of Aesthetic Measure from Stabilized Image and Video (정지영상과 동영상에서 미도의 추출)

  • Rhee, Yang-Won;Choi, Byeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.33-38
    • /
    • 2012
  • An free-fall object is received only force of gravity. Movement that only accept gravity is free-fall movement, and a free-falling object is free falling body. In other words, free falling body is only freely falling objects under the influence of gravity, regardless of the initial state of objects movement. In this paper, we assume, ignoring the resistance of the air, and the free-fall acceleration by the height does not change within the range of the short distance in the vertical direction. Under these assumptions, we can know about time and maximum height to reach the peak point from jumping vertically upward direction, time and speed of the car return to the starting position, and time and speed when the car fall to the ground. It can be measured by jumping degree and risk of accident from car or motorcycle in telematics.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.