• Title/Summary/Keyword: Peak current density

Search Result 239, Processing Time 0.027 seconds

Development of high power impulse magnetron sputtering (HiPIMS) techniques

  • Lee, Jyh-Wei
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.3-32
    • /
    • 2016
  • High power impulse magnetron sputtering (HiPIMS) technique has been developed for more than 15 years. It is characterized by its ultra-high peak current and peak power density to obtain unique thin film properties, such as high hardness, good adhesion and tribological performance. However, its low deposition rate makes it hard to be applied in industries. In this work, the development of HiPIMS system and integration of radio frequency (RF) or mid-frequency (MF) power supplies were introduced. Effects of duty cycle and repetition frequency on the microstructure, mechanical property, optical and electrical properties of some binary, ternary and quarternary nitride coatings and oxide thin films were discussed. It can be observed that the deposition rate was effectively increased by the superimposed HiPIMS with RF or MF power. High hardness, good adhesion and sufficient wear resistance can be obtained through a proper adjustment of processing parameters of HiPIMS power system.

  • PDF

A Resonant Type Inverter Power Conversion Equipment for Plasma Generator (플라즈마 발생장치용 공진형 인버터 전력변환장치)

  • Kim, Ju-Yong;Suh, Ki-Young;Mun, Sang-Pil;Jung, Jang-Gun;Kim, Young-Mun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.162-165
    • /
    • 2003
  • A resonant type voltage source and power device and a control method using Pulse Density Modulation(PDM) power control and Pulse Width Modulation(PWM)voltage control for plasma sterilization are described. For the stability of discharge in the generating tube, it is desirable that the peak apply voltage is constant. The PDM power control is employed for sustaining the voltage constant at any generating tube input power. Moreover, to avoid the influence of input AC voltage fluctuation etc., PWM voltage control with generating tube peak voltage feedback is used. Both functions were confirmed by the experiment with inverter and generating tube. The effect of input synchronous PDM method for input current stabilizing is confirmed also.

  • PDF

The output characteristics of resonant type inverter for ozone generator (오존 발생기용 공진형 인버터의 출력특성)

  • Kang, W.J.;Lee, H.W.;Suh, K.Y.;Kwon, S.K.;Mun, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.139-142
    • /
    • 2002
  • A resonant type voltage source and power device and a control method using Pulse Density Modulation(PDM) power control and Pulse Width Modulation(PWM) voltage control for Ozone Generator are described. For the stability of discharge in the generating tube, it is desirable that the peak apply voltage is constant. The PDM power control is employed for sustaining the voltage constant at any generating tube input power. Moreover, to avoid the influence of input AC voltage fluctuation etc., PWM voltage control with generating tube peak voltage feedback is used. Both functions were confirmed by the experiment with 6.5[kHz], 1.8[kW] inverter and generating tube. The effect of input synchronous PDM method for input current stabilizing is confirmed also.

  • PDF

A study on power system for plasma sterilization (플라즈마 살균용 전원장치에 관한 연구)

  • Kang, W.J.;Kim, Y.M.;Mun, S.P.;Kwon, S.K.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.52-54
    • /
    • 2002
  • A resonant type voltage source and power device and a control method using Pulse Density Modulation(PDM) power control and Pulse Width Modulation(PWM) voltage control for plasma sterilization are described, For the stability of discharge in the generating tube, it is desirable that the peak apply voltage is constant. The PDM power control is employed for sustaining the voltage constant at any generating tube input power. Moreover, to avoid the influence of input AC voltage fluctuation etc.. PWM voltage control with generating tube peak voltage feedback is used. Both functions were confirmed by the experiment with 6.5[kHz], 1.8[kW] inverter and generating tube. The effect of input synchronous PDM method for input current stabilizing is confirmed also.

  • PDF

Resonance inverter power system for plasma sterilization effective improvement (플라즈마 살균 효과 개선을 위한 공진용 인버터 전원 시스템)

  • Kim, J.Y.;Mun, S.P.;Kim, J.S.;Kim, Y.M.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1172-1174
    • /
    • 2003
  • A resonant type voltage source and power device and a control method using Pulse Density Modulation(PDM) power control and Pulse Width Modulation(PWM)voltage control for plasma sterilization are described. For the stability of discharge in the generating tube, it is desirable that the peak apply voltage is constant. The PDM power control is employed for sustaining the voltage constant at any generating tube input power. Moreover, to avoid the influence of input AC voltage fluctuation etc., PWM voltage control with generating tube peak voltage feedback is used. Both functions were confirmed by the experiment with inverter and generating tube. The effect of input synchronous PDM method for input current stabilizing is confirmed also.

  • PDF

Resonance Inverter Power System for Sterilization Effective Improvement of Plasma (플라즈마 살균 효과 향상을 위한 공전형 전원 시스템)

  • 김주용;문상필;정장근;이현우;서기영
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.397-401
    • /
    • 2003
  • A resonant type voltage source and power device and a control method using Pulse Density Modulation(PDM) power control and Pulse Width Modulation(PWM) voltage control for plasma sterilization are described. For the stability of discharge in the generating tube, it is desirable that the peak apply voltage is constant The PDM power control is employed for sustaining the voltage constant at any generating tube input power. Moreover, to avoid the influence of input AC voltage fluctuation etc., PWM voltage control with generating tube peak voltage feedback is used. Both functions were confirmed by the experiment with 6.5[㎑], 1.8[㎾] inverter and generating tube. The effect of input synchronous PDM method for input current stabilizing is confirmed also.

  • PDF

The effect of 1/f Noise Caused by Random Telegraph Signals on The Phase Noise and The Jitter of CMOS Ring Oscillator (Random Telegraph Signal에 의한 1/f 잡음이 CMOS Ring Oscillator의 Phase Noise와 Jitter에 미치는 영향)

  • 박세훈;박세현;이정환;노석호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.682-684
    • /
    • 2004
  • The effect of 1/f noise by the random telegraph signal(RTS) on the phase noise and the jitter of CMOS ring Oscillator is investigated. 10 parallel piece-wise-linear current sources connected to each node model the RTS signals. The In, the power spectral density and the jitter of output of the ring oscillator are simulated as functions of the amplitude and time constant of RTS current source. It is confirmed that the increase of amplitude of RTS is directly related to the increase of the width of phase noise md the value of jitter. The shorter the time constant is, the wider width of FET peak and the larger value of cycle to cycle jitter are.

  • PDF

Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

Preliminary study on a 3D field permanent magnet flux switching machine - from tubular to rotary configurations

  • Wang, Can-Fei;Shen, Jian-Xin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.505-508
    • /
    • 2012
  • A permanent magnet flux switching (PMFS) machine has a simple rotor, whilst both magnets and coils are set in the stator, resulting in easy removal of heat due to both copper loss and eddy current loss in magnets. However, the volume of magnets used in PMFS machines is usually larger than in conventional PM machines, and leakage flux does exist at the non-airgap side. To make full use of the magnets and gain higher power density, a novel 3-dimensional (3D) field PMFS machine is developed. It combines merits of the tubular linear machine, external-rotor rotary machine and axial-flux rotary machine, hence, offers high power density and peak torque capability, as well as efficient utility of magnets owing to the unique configuration of triple airgap fields.

Optimum Gain Distribution of the Ampilfiers in High Power YLF($Nd^{3+}$)-Phosphate Glass($Nd^{3+}$) Laser System

  • CHi, Kyeong-Koo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.20-25
    • /
    • 1989
  • The nonlinear, time dependent photon transport equations of Frantz and Nodvik, which describe the amplification of an optical pulse in an active medium, are modified to a simpler equation which describes only the amplification of energy. with this equation, the output energy of the high power YLF(Nd3+)-Phosphate Glass(Nd3+) Laser System is calculated. When the stored energy density Est is 0.10J/㎤, 0.16J/㎤, 0.228J/㎤, and 0.50J/㎤, and with the assumption of uniform population inversion density, the final output energy of this laser system is 5.38J, 176J, 317J, and 283J, respectively. The gain saturation causes distortion of the output beam. This phenomenon is described in detail at the first three rod amplifier systems in the case of E=0.228J/㎤. The peak current and decay time constant of the flashlamps, which are used to obtain population inversion in the active medium, are investigated. The flashlamp driving circuit which has optimum operational performance should have {{{{ SQRT { LC} }} time about 100$\mu$sec.

  • PDF