• Title/Summary/Keyword: Peak code

Search Result 396, Processing Time 0.037 seconds

Flow comparison between Stenosed Coronary and Abdominal Arteries (협착된 관상동맥과 복부 대동맥의 유동 특성 비교)

  • Kim, M.C.;Lee, C.S.;Kim, C.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.585-590
    • /
    • 2001
  • The hemodynamic characteristics were compared using commercial CFD code for the stenosed coronary and abdominal arteries. Numerical calculations were carried out in the axisymmetric arteries over the stenotic diameter ratios ranging from 0.25 to 0.875 (6 cases) employing the typical physiological flow conditions. In case of the coronary artery, there was only one recirculation zone observed distal to the stenosis throat during the major portion of the period. However, in case of the abdominal aorta, there were complex recirculation regions found proximal and distal to stenosis throat. For both models, the wall shear stresses(WSS) increased sharply in the converging stenosis, reaching a peak just upstream of the throat, and became negative or low values in the post-stenotic recirculation region. As the results, the oscillatory shear index(OSI) was abruptly increased at the stenosis throat. For the coronary stenosis model, the second peak in the OSI was observed distal to the stenosis. The distance between the first peak and the second peak was increased as the degree of the stenosis was raised. On the orther hand, the abdominal stenosis model showed a complex oscillatory behavior in the OSI index and did not showed such a strong second peak. As the degree of stenosis was increased, recirculation regions of the both arteries were extended much longer and flow pattern became more complex.

  • PDF

Investigation on Effective Peak Ground Accelerations Based on the Gyeongju Earthquake Records (경주지진 관측자료에 기반한 유효최대지반가속도 분석)

  • Shin, Dong Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.425-434
    • /
    • 2016
  • This study investigates important parameters used to determine an effective peak ground acceleration (EPGA) based on the characteristics of response spectra of historical earthquakes occurred at Korean peninsula. EPGAs are very important since they are implemented in the Korean Building Code for the seismic design of new structures. Recently, the Gyeongju earthquakes with the largest magnitude in earthquakes measured at Korea took place and resulted in non-structural and structural damage, which their EPGAs should need to be evaluated. This paper first describes the basic concepts on EPGAs and the EPGAs of the Gyeongju earthquakes are then evaluated and compared according to epicentral distances, site classes and directions of seismic waves. The EPGAs are dependant on normalizing factors and ranges of period on response spectrum constructed with the Gyeongju earthquake records. Using the normalizing factors and the ranges of period determined based on the characteristics of domestic response spectra, this paper draw a conclusion that the EPGAs are estimated to be about 30 % of the measured peak ground accelerations (PGA).

Performance Analysis of Multicarrier Code Selection CDMA System for PAPR Reduction in Multipath Fading Channel (PAPR을 줄이기 위한 Multicarrier Code Select CDMA시스템의 다중 경로 페이딩 채널에서 성능 분석)

  • Ryu Kwan Woong;Park Yong Wan;Hong Een Kee;Kim Myovng Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1319-1332
    • /
    • 2004
  • Multicarrier direct sequence code-division multiple access CDMA(MC DS-CDMA) is an attractive technique for achieving high data rate transmission even if the potentially large peak-to-average power ratio(PAPR) is an important factor for its application. On the other hand, code select CDMA(CS-CDMA) is an attractive technique with constant amplitude transmission of multicode signal irregardless of subchannels by introducing code selection method. In this paper we propose a new multiple access scheme based on the combination of MC DS-CDMA and CS-CDMA. Proposed scheme, which we called MC CS-CDMA, includes the sutclasses of MC DS-CDMA and CS-CDMA as special cases. The performance of this system is investigated for multipath Sequency selective fading channel and maximal ratio combining with rake receiver. In addition the PAPR of proposed system is compare with that of both MC BS-CDMA and CS-CDMA. Simulation results show that proposed system improves PAPR reduction than MC DS-CDMA at the expense of the complexity of receiver and the number of available non. Also, the numerical result shows that the proposed system is better performance than MC DS-CDMA due to the increasing processing gain and the number of time diversity gain.

Design and Simulation of Two-Dimensional OCDMA En/Decoder Composed of Double Ring Add/Drop Filters and Delay Waveguides

  • Chung, Youngchul
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.257-262
    • /
    • 2016
  • A two-dimensional optical code division multiple access (OCDMA) en/decoder composed of four double-ring resonator add/drop filters and three delay waveguides is designed, and a transfer matrix method combined with fast Fourier transform is implemented to provide numerical simulations for the en/decoder. The auto-correlation peak level over the maximum cross-correlation level is larger than 3 at the center of the correctly decoded pulse for most of wavelength hopping and spectral phase code combinations, which assures the BER lower than 10-3 which corresponds to the forward error correction limit.

Typical Daily Load Profile Generation using Load Profile of Automatic Meter Reading Customer (자동검침 고객의 부하패턴을 이용한 일일 대표 부하패턴 생성)

  • Kim, Young-Il;Shin, Jin-Ho;Yi, Bong-Jae;Yang, Il-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1516-1521
    • /
    • 2008
  • Recently, distribution load analysis using AMR (Automatic Meter Reading) data is researched in electric utilities. Load analysis method based on AMR system generates the typical load profile using load data of AMR customers, estimates the load profile of non-AMR customers, and analyzes the peak load and load profile of the distribution circuits and sectors per every 15 minutes/hour/day/week/month. Typical load profile is generated by the algorithm calculating the average amount of power consumption of each groups having similar load patterns. Traditional customer clustering mechanism uses only contract type code as a key. This mechanism has low accuracy because many customers having same contract code have different load patterns. In this research, We propose a customer clustring mechanism using k-means algorithm with contract type code and AMR data.

A bivariate extension of the Hosking and Wallis goodness-of-fit measure for regional distributions

  • Kjeldsen, Thomas Rodding;Prosdocimi, Ilaria
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.239-239
    • /
    • 2015
  • This study presents a bivariate extension of the goodness-of-fit measure for regional frequency distributions developed by Hosking and Wallis [1993] for use with the method of L-moments. Utilising the approximate joint normal distribution of the regional L-skewness and L-kurtosis, a graphical representation of the confidence region on the L-moment diagram can be constructed as an ellipsoid. Candidate distributions can then be accepted where the corresponding the oretical relationship between the L-skewness and L-kurtosis intersects the confidence region, and the chosen distribution would be the one that minimises the Mahalanobis distance measure. Based on a set of Monte Carlo simulations it is demonstrated that the new bivariate measure generally selects the true population distribution more frequently than the original method. An R-code implementation of the method is available for download free-of-charge from the GitHub code depository and will be demonstrated on a case study of annual maximum series of peak flow data from a homogeneous region in Italy.

  • PDF

ROSA/LSTF test and RELAP5 code analyses on PWR 1% vessel upper head small-break LOCA with accident management measure based on core exit temperature

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1412-1420
    • /
    • 2018
  • An experiment was performed using the large-scale test facility (LSTF), which simulated a 1% vessel upper head small-break loss-of-coolant accident with an accident management (AM) measure under an assumption of total-failure of high-pressure injection (HPI) system in a pressurized water reactor (PWR). In the LSTF test, liquid level in the upper head affected break flow rate. Coolant was manually injected from the HPI system into cold legs as the AM measure when the maximum core exit temperature reached 623 K. The cladding surface temperature largely increased due to late and slow response of the core exit thermocouples. The AM measure was confirmed to be effective for the core cooling. The RELAP5/MOD3.3 code indicated insufficient prediction of primary coolant distribution. The author conducted uncertainty analysis for the LSTF test employing created phenomena identification and ranking table for each component. The author clarified that peak cladding temperature was largely dependent on the combination of multiple uncertain parameters within the defined uncertain ranges.

Research and Verification of Distance and Dead Thickness Changes of Coaxial HPGe Detectors using PENELEOPE Simulation (PENELEOPE 시뮬레이션을 이용한 동축 HPGe 검출기의 거리 및 외부 접촉 층 두께 변화 연구 및 검증)

  • Eun-Sung Jang;Byung-In Min
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.175-184
    • /
    • 2023
  • Based on the actual shape of the detector and the data provided by the manufacturer, the shape of the detector was implemented through Penelope simulation and applied to the appropriate four-layer thickness based on the efficiency obtained from the measurements. Efficiency calculations to determine the effect of the simulated number of Full Energy Peak Efficiency(FEPE) channels in the detector and the outside contact layer in the crystal on the Full Energy Peak Efficiency were performed for various four-layer thicknesses of 0.3, 0.5, 0.7, 1.0, 1.2, and 1.4 mm using the Penelope Code. When the thickness of the external contact layer was increased by 5 times, the Full Energy Peak Efficiency decreased by about 36% for 59.50 keV, and the Full Energy Peak Efficiency decreased by 10% for 1836. In addition, as it increased by 10 times, the Full Energy Peak Efficiency decreased by about 20% for 59.54 keV, and 7% for 1836.01 keV. The Penelope simulated Full Energy Peak Efficiency channel decreases exponentially with the increase in the four layers. In addition, it was confirmed that the total effect curve was well matched with a relative difference of less than 3.5% in the 0.3-1.4 mm dead layer thickness region. However, it was found that the inhomogeneous dead layer is still a parameter in the Monte Carlo model.

Numerical Analysis of Hypersonic Shock-Shock Interaction using AUSMPW+ Scheme and Gas Reaction Models (AUSMPW+ 수치기법과 반응기체 모델을 이용한 극초음속 충격파-충격파 상호작용 수치해석)

  • Lee Joon-Ho;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.29-34
    • /
    • 1999
  • A two-dimensional Navier-Stokes code based on AUSMPW+ scheme has been developed to simulate the hypersonic flowfield of hypersonic shock-shock interaction. AUSMPW+ scheme is a new hybrid flux splitting scheme, which is improved by introducing pressure-based weight functions to eliminate the typical drawbacks of AUSM-type schemes, such as non-monotone pressure solutions. To study the real gas effects, three different gas models are taken into account in this paper: perfect gas, equilibrium flow and nonequilibrium flow. It has been investigated how each gas model influences on the peak surface loading, such as wall pressure and wall heat transfer, and unsteady flowfield structure in the region of shock-shock interaction. With the results, the value of peak pressure is not sensitive to the real gas effects nor to the wall catalyticity. However, the value of peak heat transfer rates is affected by the real gas effects and the wall catalyticity. The structure of the flowfield also changes drastically in the presence of real gas effects.

  • PDF

A Mapped Mc-OFDM Cooperative Communications System to Reduce PAPR and Improve Data Reliability (데이터 신뢰성 향상과 PAPR 감소를 위한 매핑된 Mc-OFDM 협력 통신 시스템)

  • Hwang, Yun-Kyeong;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1254-1261
    • /
    • 2007
  • Mc-OFDM(Multi code-Orthogonal Frequency Division Multiplexing) modulation has been developed for high-speed data transmission over wireless channels. However, this system suffers critical problem from relatively high PAPR(Peak to Average Power Ratio). To reduce PAPR, we suggest a new technique, called Mapping using (N+1)PSK and demonstrate the performance of mapped Mc-OFDM system. On the other side, in OFDM system, each sub-carrier experiences different fading, thus some sub-carriers may be completely lost because of deep fade. To solve a above mention problem, we propose cooperative communications that improve the reliability of sub-carriers through spatial diversity.