• Title/Summary/Keyword: Peak blasting pressure

Search Result 14, Processing Time 0.019 seconds

An Experimental and Numerical Study on the Stemming Effect of a Polymer Gel in Explosive Blasting (화약발파에서 폴리머 겔의 전색효과에 관한 실험적 및 수치해석적 연구)

  • Baluch, Khaqan;Kim, Jung-Gyu;Ko, Young-Hun;Kim, Seung-Jun;Jung, Seung-Won;Yang, Hyung-Sik;Kim, Youg-Kye;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.35-47
    • /
    • 2018
  • In this study, several concrete-block blast tests and AUTODYN numerical analyses were conducted to analyze the effects of different stemming and coupling materials on explosion results. Air, sand, and polymer gel were used as both the stemming and coupling materials. The stemming and coupling effects of these materials were compared with those of the full-charge condition. Soil-covered or buried concrete blocks were used for field crater tests. It was found from the concrete block tests and numerical analyses that both the crater size and the peak pressure around the blast hole were higher when the polymer gel was used than when the sand and the decoupling condition were used. The numerical analyses revealed the same trend as those of the field tests. Pressure peaks in concrete block models were calculated to be 37, 30, and 16 MPa, respectively, for the cases of the polymer gel, sand, and no stemming and decoupling condition. The pressure peak was 52 MPa in the case of full-charge condition, which was the highest pressure. But the damage area for the case was smaller than that obtained from the use of polymer gel. Full-charge was also used as a reference test.

Hydro-mechanical Behavior of a Circular Opening Excavated in Saturated Rockmass (포화된 암반에 굴착된 원형공동의 수리-역학적 거동)

  • Lee Youn-Kyou;Shin Hee-Soon
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.23-35
    • /
    • 2005
  • Excavation of an opening in a saturated porous rock may lead to the development of pore pressure around the opening due to the redistribution of initial rock stresses. The built-up of pore pressure, in turn, may affect the mechanical behavior of rock mass and give the different pattern of stress distribution around the opening from that of the case where the coupling is neglected. In this study, the short time response of an opening excavated in saturated ground under anisotropic initial stress conditions was investigated numerically. Not on the wall of opening but at a short distance from the wall, the tangential stresses were peak during the short period after excavation when the hydro-mechanical coupling is considered.

A Review of TNT Equivalent Method for Evaluating Explosion Energy due to Gas Explosion (가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰)

  • Kwon, Sangki;Park, Jung-Chan
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.1-13
    • /
    • 2015
  • Accidents related to gas explosion are frequently happened in foreign countries and in Korea. For the evaluation and the analysis of gas explosions, TNT equivalent methods are used. In this study, the influence of the selection of chemical equation in TNT explosion and the selection of enthalpy of the products on the explosion energy, detonation pressure, velocity of detonation, and temperature was calculated. Depending on the chemical equations, the maximum detonation pressure can be 2 times higher than the minimum. As an example for applying TNT equivalent method, an explosion of methane gas in a confined volume was assumed. With the TNT equivalent, it was possible to predict the variation of peak overpressure and impulse with the distance from the explosion location.

Behaviour of Shallow Foundations Subjected to Blast Loads and Related Liquefaction

  • Ritika, Sangroya;Choudhury, Deepankar;Park, Young Jin;Shin, Eun Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • In recent years, world has witnessed many man-made activities related to both above and underground blasts. Details on behaviour of shallow foundations subjected to blast loads and induced liquefaction is scarce in literature. In this paper, typical shallow strip foundation in saturated cohesionless soils subjected to both above and underground blasting have been simulated by using finite difference based numerical model FLAC3D. Peak particle velocity (PPV) has been obtained to propose critical values for which bearing capacity failure for shallow foundations with soil liquefaction can occur. Typical results for pore pressure ratio (PPR) for various scaled distances are compared to PPR values obtained by using empirical equation available in literature which shows good agreement. Critical design values obtained in the present study for PPV and PPR to estimate the scaled distance, bearing capacity failure and liquefaction susceptibility can be used effectively for design of shallow strip foundation in cohesionless soil subjected to both above and under ground blast loads.