• Title/Summary/Keyword: Peak Stress

Search Result 865, Processing Time 0.027 seconds

Development of Reduction Methods of Thermal Stresses Due to Hydration Heat (수화열에 의한 균열 저감 공법에 관한 연구)

  • Yang, Jo-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1705-1710
    • /
    • 2008
  • In this paper, a program for simulating hydration heat and stresses was developed. And an effective methods were proposed for reduction of hydration heat stresses using flyash and steel fiber. It was shown that flyash replacement made reduction of peak temperature due to hydration heat. However, the effectiveness of reduction of tensile stress was not as good as it of peak temperature. Not only peak temperature but also tensile stress were reduced by the addition of steel fiber.

Nondestructive Evaluation of Adhesive Bonding Quality by Measurements of Peak Amplitude of Simulated Stress Wave (모의 음향 방출 신호의 Peak Amplitude측정을 통한 복합 재료 접합부의 비파괴평가)

  • Son, Y.H.;Lee, J.O.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.357-363
    • /
    • 1995
  • Disbond size of adhesively bonded single lap and double lap joints CFRP composite specimens has been evaluated using acousto-ultrasonic(AU) technique. Frequency spectra for all specimens were obtained by measuring peak amplitude of the stress wave propagated through the bond-lines. By analyzing these frequency spectra, peak amplitude was found to be proportional to fractional bonding area and to be maxima at the fundamental and the third order higher harmonic frequencies of specimen thickness mode. The disbond size can be evaluated quantitatively and this technique can be applied to real structures if the reference specimens are prepared in advancve.

  • PDF

An evaluation on sealing performance of elastomeric O-ring compressed and highly pressurized (압축 및 내압을 받는 고무 오링의 기밀 성능 평가)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.86-93
    • /
    • 2009
  • Elastomeric O-rings have been the most common seals due to their excellent sealing capacity, and availability in costs and sizes. One of the critical applications of O-ring seals is solid rocket motor joint seal where the operating hot gas must be sealed during the combustion. This has long been a design issue to avoid the system failure. For laterally constrained, squeezed and pressurized condition, deformed shape of O-ring was measured by computed tomography method and CCD laser sensor, compared with numerical calculations. As clearance gap changes, sealing performance had been evaluated on peak contact stresses at top, bottom and side contact surfaces. As clearance gap increases, peak contact stresses and contact widths in top and side contact surfaces increase, and the asymmetry of stress distributions is promoted due to pressure increase. It is suggested that peak stress of bottom contact surface can be approximated by simple superposition of peak ones due to squeeze and pressure. Under pressurized condition, sealing performance is dependent on not peak stresses of bottom and side contact surfaces but that of top.

Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration (염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사)

  • Yunsuk Kang;Gwihwan Lim;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.381-390
    • /
    • 2023
  • In this study, the mechanical performance of concrete exposed to chloride ion penetration was investigated. And a compressive stress-strain model was presented. CaCl2 solution was added when mixing concrete to simulate long-term chloride ion penetration, and the concentration of chlorine ions was set to 0, 1, 2, and 4 % based on the weight of the binder. To investigate the compressive stress-strain curve after the peak stress of concrete, the compressive strength was measured by displacement control. When the chlorine ion concentration was 1 %, peak stress increased, but when the chlorine ion concentration was 2 % or more, peak stress decreased. In the case of peak strain, no trend according to chloride ion concentration was observed at 7 days. At 28 days, peak strain decreased as the chloride ion concentration increased. A compressive stress-strain curve model based on the Popovics model was presented using changes in peak stress and peak strain at 28 days. Microstructure analyses were performed to investigate the cause of the decrease in mechanical performance as the concentration of chlorine ions increased. It was confirmed that as the concentration of chlorine ion increased, Friedel's salt increased and portlandite decreased.

An Analysis of Stress on Foot by Lifting Height and Angle (들기 작업에서 높이와 각도 변화가 발 부위에 미치는 스트레스에 관한 연구)

  • Yeo, Min-Woo;Lee, Sang-Do;Lee, Dong-Choon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.17-24
    • /
    • 2006
  • In this paper, we propose a stress analysis on foot by lifting task attitudes. Maximum force and peak pressure were measured on 8 body regions by Pedar system in order to analysis the stress which is affected by task style and angle on foot when Manual Materials Handling task. As for the peak pressure of the whole foot as to the task height during the lifting task, the height from Knuckle to Shoulder was the least in the peak pressure. Also, as for the maximum force and the peak pressure of the whole foot as to the task angle during the lifting task, it could be seen that the more an angle increases, the stress influencing on a foot jumps. As for the maximum force and the peak pressure by foot region as to the task height in case of the lifting task, the height from Knuckle to Shoulder is indicated the smallest value in the maximum force and the peak pressure, thus there is necessary to attain the work design that considered this. Also, as for the maximum force by foot region as to the task angle in case of the lifting task, 0° tasking is indicated to be least, thus there is necessity to be attained the tasking design in a bid to prevent the existence of an angle. The results of this paper are thought to be helpful to the suitable work design, to the prevention of musculoskeletal disorders related to the lower limbs, and to the design of ergonomic safety shoes.

Alterations in Left ventricular End-systolic Wall Stress During Short-term Follow-up After Correction of Isolated Congenital Aortic Stenosis (선천성 대동맥 협착증의 술전 및 술후 단기간의 수축말기 좌심실 내벽 스트레스의 변화)

  • 김시호
    • Journal of Chest Surgery
    • /
    • v.33 no.10
    • /
    • pp.777-784
    • /
    • 2000
  • Congenital aortic stenosis in children is characterized by "excessive" left ventricular hypertrophy with reduced left ventricular systolic wall stress that allows for supernormal ejection performance. We hypothesized that left ventricular wall stress was decreased immediately after surgical correction of pure congenital aortic stenosis. Also measuring postoperative left ventricular wall stress was a useful noninvasive measurement that allowed direct assessment for oxygen consumption of myocardium than measuring the peak systolic pressure gradient between ascending aorta and left ventricle for the assessment of surgical results. Material and Method: Between September 1993 and August 1999, 8 patients with isolated congenital aortic stenosis who underwent surgical correction at Yonsei cardiovascular center were evaluated. There were 6 male and 2 female patients ranging in age from 2 to 11 years(mean age, 10 years). Combined Hemodynamic-Ultrasonic method was used for studying left ventricular wall stress. We compared the wall stress peak systolic pressure gradient and ejection fraction preoperatively and postoperatively. Result: After surgical correction peak aortic gradient fell from 58.4${\pm}$17.6, to 23.7${\pm}$17.7 mmHg(p=0.018) and left ventricular ejection fraction decreased but it is not statistically significant. In the consideration of some factors that influence left ventricular end-systolic wall stress excluding one patient who underwent reoperation for restenosis of left ventricular outflow tract left ventricular end-systolic pressure and left ventricular end-systolic dimension were fell from 170.6${\pm}$24.3 to 143.7${\pm}$27.1 mmHg and from 1.78${\pm}$0.4 to 1.76${\pm}$0.4 cm respectively and left ventricular posterior wall thickness was increased from 1.10${\pm}$0.2, to 1.27${\pm}$0.3cm but it was not statistically singificant whereas left ventricular end-systolic wall stress fell from 79.2${\pm}$24.9 to 57.1${\pm}$27.6 kdynes/cm2(p=0.018) in 7 patients. For one patient who underwent reoperation peak aortic gradient fell from 83.0 to 59.7 mmHg whereas left ventricular end-systolic wall stress increased from 67.2 to 97.0 kdynes/cm2 The intervals did not change significnatly. Conclusion ; We believe that probably some factors that are related to left ventricular geometry influenced the decreased left ventricular wall stress immediately after surgical correction of isolated congenital aortic stenosis. Left ventricular wall stress is a noninvasive measurement and can allow for more direct assesment than measuring peak aortic gradient particularly in consideration of the stress and oxygen consumption of the myocardium therefore we can conclude it is a useful measurement for postoperative assessment of congenital aortic stenosis.

  • PDF

Effect of Anisotropy on Fatigue Crack Propagation Rate and Arrest Behavior with 2024-T3 Alumunum Alloy (2024-T3 A1 합금의 이방성이 피로균열진전속도와 정류거동에 미치는 영향)

  • 오세욱;김태형;오정종
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.124-132
    • /
    • 1993
  • In order to examine the effect of anisotropy and stress ratio on fatigue crack propagation rate and opening-closing behavior and also arrest behavior by single tension peak overload, the fatigue tests of constant amplitude atress and single tension peak overload adding to cycle of constant amplitude were carried out in stress ratio of -0.4, -0.2, and 0.4 with materials of T-L and L-T directions in 2024-T3 aluminum alloy plate. Crack opening-closing begavior were measured by the compliance method using COD gage and strain gage. In case of the crack opening-closing behavior was measured by strain gage, the effect of stress ratio is unchangeable. But in the case of COD gage, that is remarkably decreased. Fictitious effective stress intensity factor(U sub(f)) and effective stress intensity factor ratio(U) in L-T direction was higher than those in T-L direction and also threshold arrest overload ratio incrased as stress ratio decreased and that of T-L direction was higher than that in L-T direction.

  • PDF

Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

  • Jang, Ki-Nam;Cha, Hyun-Jin;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1740-1747
    • /
    • 2017
  • To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of $250^{\circ}C$, $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$, and then cooled to room temperature at cooling rates of $0.3^{\circ}C/min$ under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < $250^{\circ}C$, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

Stress analysis of anterior cantilever bridge

  • Yang, Hong-So;Ku, Chul-Whoi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.283-290
    • /
    • 2000
  • State ment of Problems. Although some clinicians report long-term success with fixed partial denture (FPD) that contain cantilever pontic, the use of cantilever FPDs may be hazardous because of unfavorable leverages during mastication. Purpose of Study. This study aims to compare the stress induced in the periodontium with normal and reduced bone support, and to analyze the stress distribution patterns of anterior cantilevered FPDs using the finite element method. Results. Cantilever bridge with a reduced bone level generated the highest peak stresses in the periodontium. In the models of reduced bone support, a cantilever bridge exhibited the great-est mobility and a 3-unit fixed restorations induced the smallest mobility of canine. The highest peak stress level of a 3-unit bridge in the periodontium is similar to the unrestored situation. But stress distribution in the bone is modified. Conclusion. In reduced bone support, a cantilever bridge exhibited the greatest mobility and stress.

  • PDF

The Stress Analysis of Dissimilar Materials in Brazed Interface by BEM (이종재 브레이징 접합계면의 응력해석)

  • 오환섭;김시현;김성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.769-772
    • /
    • 1997
  • In this study, By employing two dimensional(2-D) Boundary Element Method(BEM) stress analysis was carried to investigate stress distributions on the brazing joint of a Hardmetal and a HSS. Two model was proposed to analyze stress singularity in brazed interface. The stress results from the BEM were considered influence of the kind of materials , thickness of filled metal and length of vertical brazing adhesive. From those obtained results , the peak point of stress was founded in the lower part of two interface was made by brazing. As the thickness and length changed, the maximum stress tended to change in the peak point.

  • PDF