• Title/Summary/Keyword: Peak Skin Dose

Search Result 12, Processing Time 0.016 seconds

Effect of Melissa officinalis L. leaf extract on lipid accumulation by modulating specific adipogenic gene transcription factors in 3T3-L1 adipocytes

  • Lee, Hyun Jeong;Lim, Jonghak;Peak, Junoh;Ki, Mun-sang;Lee, Sang-bong;Choe, Gayong;Jung, Jaeyun;Jung, Hansang;Jeon, Suwon;Park, Tae-Sik;Shim, Soon-Mi
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.169-174
    • /
    • 2020
  • The objective of this study was to investigate the effects of a hypodermic injectable solution comprised of an LPM LB meso solution containing Melissa officinalis L. leaf extract (LPM) on the lipogenesis in the 3T3-L1 cells line. The lipid accumulation measured by oil red o staining in the 3T3-L1 adipocytes treated with LPM, which was reduced in a dose dependent manner and showed 91.7 to 62.9% compared to control group. Its effectiveness with a 50% solution was significantly higher than the hydroxycitric acid (positive control) treatment without showing cell cytotoxicity. In a quantitative real-time PCR, it was demonstrated that the LPM treatment appeared to upregulate the mRNA expression of the adipogenesis-related genes, which included the peroxisome proliferator-activated receptor gamma (50% concentration) while down-regulating the CCAAT-enhancer binding protein alpha (50% concentration) and the sterol regulatory element-binding protein 1c (10, 25, and 50% concentrations). The results from the current study suggest that the LPM could be useful biomaterials that can inhibit obesity in the 3T3-L1 cells, which could possibly be by regulating the specific adipogenic gene transcription factors.

The Effect of Ginkgo Biloba Extract on Radiosensitivity of Mouse Skin and Jejunal Crypt (Ginkgo Biloba Extract가 마우스 피부 및 공장 소낭선의 방사선감수성에 미치는 영향)

  • Shin, Kyung-Hwan;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.107-114
    • /
    • 1998
  • Purpose : Ginkgo biloba extract(GBE) is known to increase the peripheral blood circulation. This study was designed to evaluate the effect of GBE on the acute normal tissue radiation reaction. Materials and Methods : mice were divided into two groups, radiation alone and two doses GBE plus radiation, for both acute skin reaction and jejunal crypt assay. GBE was given i.p. one hour before irradiation with priming dose given one day earlier. Thirty to Fifty Gy for acute skin reaction and 11 to 14 Gy for jejunal crypt were irradiated to right hind leg and whole body, respectively. Results : Radiation doses($RD_{50}$) for Peak skin score of 2.0 were 44.2Gy (40.6-48.2Gy) for radiation alone and 44.4Gy(41.6-47.4Gy) for two doses GBE plus radiation, showing no effect of GBE on acute radiation skin damage. The numbers of regenerating jejunal crypts per circumference were also almost the same for each radiation dose level(p=0.57-0.94), and the mean lethal doses($D_o$) were 1.800y(1.57-2.09Gy) for radiation alone and 1.88Gy(1.65-2.18Gy) for two doses GBE plus radiation, indicating no effect of GBE on jejunal crypt cell survival after radiation. Conclusion : GBE doesn't increase acute normal tissue radiation reaction in this model system. As GBE was verified to enhance radiation effect on tumor, high therapeutic gain is expected when GBE is combined with radiation therapy.

  • PDF