• Title/Summary/Keyword: Peak Rate of Runoff

Search Result 69, Processing Time 0.025 seconds

Runoff Characteristics of Non-point Source According to Rainfall in Nam Watershed (남천에서의 강우시 비점오염물질의 유출특성)

  • Jang, Seong-Ho;Park, Jin-Sick
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This study was conducted to identify the runoff characteristics of non-point source according to rainfall in Nam watershed. Land-uses of the Nam watershed were surveyed paddy field 4.5%, crop field 6.8%, mountainous 78.7%, urban 2.4%, and etc. 7.7%. Mean runoff coefficients in each area were observed Ⅰ area 0.08, Ⅱ area 0.08, and Ⅲ area 0.05. In the relationship between the rainfall and peak-flow, correlation coefficients(r) were investigated Ⅰ area -0.8609, Ⅱ area 0.6035, and Ⅲ area -0.4913. In the relationship between the antecedent dry period and first flow runoff, correlation coefficients(r) were investigated Ⅰ area -0.9093, Ⅱ area -0.1039, and Ⅲ area -0.7317. The discharge of pollutant concentrations relates to the flow rate of storm-water. In the relationship between the rainfall and watershed loading, exponent values of BOD, COD, SS, and T-N were estimated to 1.2751, 1.2003, 1.3744, and 1.1262, respectively.

Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model (다양한 강우강도 및 패턴에 따른 WEPP 모형의 유출‧첨두유출‧토양유실량 평가)

  • Choi, Jae-Wan;Ryu, Ji-Chul;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.795-804
    • /
    • 2012
  • Recently, changes in rainfall intensity and patterns have been causing increasing soil loss worldwide. As a result, the water ecosystem becomes worse and crops yield are reduced with soil loss and nutrient loss with it. Many studies have been proposed to estimate runoff and soil loss to predict or decrease non-point source pollution. Although the USLE has been used for many years in estimating soil losses, the USLE cannot reflect effects on soil loss of changes in rainfall intensity and patterns. The WEPP, physically based model, is capable of predicting soil loss and runoff using various rainfall intensity. In this study, the WEPP model was simulated for sediment yield, runoff and peak runoff using data of 5, 10, 30, 60 minute term rainfall, Huff's method and design rainfall. In case of rainfall interval of 5 minutes and 60 minutes, the sediment and runoff values decreased by 24% and 19%, respectively. The peak rate runoff values decreased by 16% when rainfall interval changed from 5 minutes to 60 minutes, indicating the peak rate runoff values are affected by rainfall intensity to some degrees. As a result of simulating using Huff's method, all values (sediment yield, runoff, peak runoff) were found to be the greatest at third quartile. According to the analysis under various design rainfall conditions (2, 3, 5, 10, 20, 30, 50, 100, 200, 300 years frequency), sediment yield, runoff, and peak runoff of 906.2%, 249.4% and 183.9% were estimated using 2 year to 300 year frequency rainfall data.

Analysis of Effect on Runoff and Water Quality of LID using Infiltration Facilities (우수 침투 시설을 활용한 친환경 도시 개발지구에서의 유출량 및 비점오염 저감 효과 분석)

  • Hwang, Jin-Yong;Yeon, Kyu-Seok;Kim, Ik-Jae;Kim, Ki-Sung;Choi, Joong-Dae;Jeon, Ji-Hong;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.105-114
    • /
    • 2009
  • With urbanization in many countries, many pervious areas are being converted into impervious areas. These land use changes cause many negative impacts on runoff and water quality in the areas. Especially runoff volume and peak runoff are increasing with urbanization. In addition to the increased runoff, more pollutant transports to the downstream areas. For these reasons, Low Impact Development (LID) are nowadays being introduced in urban planning. For environment-friendly and economical urban development, the LID Integrated Management Practices (IMPs) are applied in various urban development. However, exact effects on runoff and water quality of various LID IMPs are not assessed with proper LID evaluation technique. Thus, the SWMM (Storm Water Management Model) 5.0 model was slightly modified to simulate the effect of infiltration manhole on runoff and water quality. For comparison of runoff and TSS (Total Suspended Solids) from the study area (26.5 ha), three scenarios were made in this study. It was found that runoff volume, peak runoff, and TSS could be reduced with infiltration manholes and pervious pavements to some degree. Although, there are many limitations in the analysis of LID effects on runoff and TSS, similar trends shown in this study would be expected with site-specific LID IMPs. Thus, it is strongly recommended that various site-specific LID IMPs, such as infiltration facilities, should be applied as much as possible for environment-friendly urban planning.

Runoff Characteristics Analysis for Interior Drainage Systems in Urban Basin -Application of SWMM- (도시유역의 내수배제시스템 설계를 위한 유출특성분석 -SWMM의 적용-)

  • Choi, Yun-Young;Lee, Yeong-Hwa
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.193-199
    • /
    • 2000
  • This study is carried out the analysis of the runoff characteristics for the design of the interior drainage systems by SWMM in urbanization basin. The basin analyzed in this study is Bumuh-chun basin which is located in Susung-gu of Taegu city. Huff method is used for rainfall distribution analysis. The optimal rainfall duration in Bumuh-chun basin is analyzed as about 90 minutes decided from comparison of arrival time and critical duration. Flood flow variation pattern is proposed through the comparison of the results of peak flow and peak time analyzed by SWMM about pre-urbanization and post-urbanization of Bumuh-chun basin. It is known that the variation of arrival time caused by the rapid increase of pavement rate in the upper area shows about 20∼25 minutes faster than pre- urbanization. Therefore, the management of surface water for design of water supply and drainage, and channel alteration has to considered the variation of geological factors according to urbanization.

  • PDF

An Analysis of Runoff Reduction Effect of Infiltration Facilities in Urban Area (도시유역에서 침투시설의 우수유출저감효과 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae;Lee, Sang-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.628-631
    • /
    • 2007
  • One of the structural measures for the peak flow reduction is infiltration facilities. There are many types in infiltration facilities - infiltration basin, trench, bed, porous pavement, percolated subdrain, dry well. In this study runoff reduction effect of infiltration trench is analyzed by WinSLAMM. Runoff reduction effect is investigated by each design rainfall and temporal pattern of rainfall particularly. The biggest reduction is shown in Yen and Chow's temporal pattern of design rainfall and the smallest reduction is shown in Huff's first quartile pattern. Runoff reduction rate is presented about 6 to 14 percentage, and the larger return period, the smaller runoff reduction rate.

  • PDF

A Study on the Peak Runoff Reduction Effect of Seolleung·Jeongneung Zone by Applying LID(Low Impact Development) System based on the Landscape Architectural Technology (조경기술기반 LID 시스템 적용을 통한 선릉·정릉 권역의 첨두유출량 분석)

  • Kim, Tae-Han;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.126-133
    • /
    • 2017
  • This study analyzed hydrological changes of stormwater runoff of Seolleung Jeongneung zone according to the application of LID system based on landscape Architectural technology. The results are as follows. First, when flooding occurred in Gwanghwamun in July 27, 2011, the maximum instantaneous rainfall amount was 183 mm/hr recorded at 10:00 on 27th for 10 minutes, and it was confirmed that rainfall intensity more than three times as high as the maximum rainfall of 57.5 mm/hr. Second, it is possible to control peak flow rate in the case of 1,500mm of soil thickness, so that it is possible to improve the vulnerability of flood damage in Seolleung and Jeongneung zone when applying the LID system. Third, in the berm height scenario, peak flow rate control was not controled in all depth level models, but the first stormwater runoff was delayed by 4 hours and 10 minutes compared to the soil thickness scenario. It was interpreted as a relatively important indicator the soil thickness for the initial stromwater runoff reduction and the berm height for the peak runoff. Through this, the systematic adaptation of landscape-friendly ecological factors within the cultural property protection zone could theoretically confirm the effects of flood disaster prevention.

Runoff Characteristics of a Small Catchment in Eoseungsaeng-oreum, Jeju Island (제주도 스코리아콘의 유출 특성 - 어승생오름 소유역을 사례로 -)

  • KIM, Taeho;AN, Junggi
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.55-65
    • /
    • 2008
  • In order to examine the runoff characteristics of scoria cones in Jeju Island, hydrological observations were conducted in the experimental basin (5.1 ha) of Eoseungsaeng-oreum which has been predominantly covered with Carpinus laxiflora and Quercus serrata. Although runoff has continuously occurred during the observed period, the baseflow gradually increased from April and decreased from October. The peak flow approximately corresponded to every rainfall events except for the rainfall events which has slight total precipitation and no previous precipitation. The experimental basin shows flash runoff response and short lag time; the mean lag time is 35.8 minutes. Although the runoff ratio of quick flow is proportional to total precipitation, the increasing rate is low and the maximum runoff ratio is 24.7%. In addition, the runoff ratio is less than 1% in 68.3% of the rainfall events, suggesting that the portion of quick flow to total precipitation is low. The rainfall events with relatively long event time demonstrated a secondary peak generated by translatory flow. The runoff characteristics seem to be related to local impermeable beds in the experimental basin.

The furulamelllal study in order to obtain the hydrological design basis for hydrological structures in Korea (Run ofl estimate and Flood part) (한국에 있어서 제수문구조물의 설계의 기준을 주기 위한 수문학적 연구(류거, 홍수 편))

  • 박성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1011-1034
    • /
    • 1966
  • This thesis is the final report which has long been studied by the author to obtain the design basis for various hydrological constructions with the specific system suitable to the natural environmental conditions in Korea. This report is divided into two parts: one is to estimate runoff volume from watersheds and the other to estimate the peak discharge for a single storm. According to the result of observed runoff record from watersheds, it is known that Kajiyama formula is useful instrument in estimating runoff volume from watersheds in this country. But it has been found that this formula shows us 20-30% less than the actual flow. Therefore, when wihed to bring a better result, the watershed characteristics coefficient in this formula, that is, f-value, should be corrected to 0.5-0.8. As for the method to estimate peak discharge from drainage basin, the author proposes to classify it in two ways; one is small size watershed and the other large size watershed. The maximum -flood discharge rate $Q_p$ and time to peak Pt obtained from the observed record on the small size watershed are compared by various methods and formulas which are based upon the modern hydrological knowledge. But it was fou.d that it. was not a satisfied result. Therefore, the author proposes. tocomputate $Q_p$, to present 4.0-5.0% for the total runoff volume ${\Sigma}Q$.${\Sigma}Q$ is computed under the assumption of 30mm 103s in watershed per day and to change the theoritical total flow volume to one hour dura tion total flow rate when design daily storm is given. Time to peak Pt is derived from three parameters which are u,w,k. These are computed by relationship between total runoff volume (ha-m unit)and $Q_p$. (C.M.S. unit). Finally, the author checked out these results obtained from 51 hydrographs and got a satisfied result. Therefore the author suggested the model of design dimensionless unit-hydrograph. And the author believes that this model will be much available at none runoff record river site. In the large size watersheds in Korea when the maximum discharge occurs, the effective rainfall is two consequtive stormy days. So the loss in watershed was assutned as 6Omm/2days,and the author proposed 3-hour-daration hydrograph flow distribution percentage. This distribution percentage will be sure to form the hydrograph coordinate.

  • PDF

Modification of TOPMODEL Considering Spatial Connectivity of Saturated Area (공간적 포화면적의 공간적 연결을 고려한 TOPMODEL의 개선과 적용)

  • Kim, Sang-Hyeon;Kim, Gyeong-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.515-524
    • /
    • 1999
  • A methodology to resolve a TOPMODEL problem has been suggested, which is associated with the spatial distribution of soil moisture behaviour in a runoff mechanism. A procedure to integrate the spatial information of saturation deficit in the TOPMODEL reflects the connectivity of saturated area in a watershed. The developed algorithm includes an improved basis in tracing the runoff path without increasing the number of parameters. The performance of the developed algorithm has been tested to an upland subwatershed, namely Dongok, which is the IHP watershed located at Wichon, Korea. Comparing with the original statistical version of the TOPMODEL, it has been found that the suggested algorithm can relax an overestimation of peak rate in the runoff simulation.

  • PDF

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF