• Title/Summary/Keyword: Peak Power Control

Search Result 470, Processing Time 0.024 seconds

Development of Air Conditioner Peak Electric Power Control System using Power Line Communication (전력선 통신을 이용한 에어컨 피크 전력 제어 시스템 개발)

  • Han, Jae-Yong;Lee, Sun-Heum
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.44-51
    • /
    • 2009
  • In this paper, an air conditioner peak power control system using electric power line communication has been developed. The air conditioner power control system using RS-485 communication method is hard to install on the existing buildings due to difficulty in cabling, and the system using wireless communication methods has a weak point of not being able to be used in close space, while the developed system has its own advantages of overcoming the above mentioned obstacles. In addition, the system is extended to support not only single-phase electricity system but also three-phase four-wire electricity system, and therefore can be installed anywhere in the domestic environment. The system also has enhanced the ease of deployment, operational stability and economical efficiency by compact circuit design. Considering the current state requiring the energy sayings, the system would greatly contribute to the widespread use of the air conditioner power control system. The superiority in the performance and stability of the system has been proved by the design verification of each component such as remote air conditioner controller, electric power line gateway and so on, and the field test of the whole system.

An Improved Multi-Tuned Filter for High Power Photovoltaic Grid-Connected Converters Based on Digital Control

  • Sun, Guangyu;Li, Yongli;Jin, Wei
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.160-170
    • /
    • 2018
  • For high power photovoltaic (PV) grid-connected converters, high order filters such as multi-tuned filters and Traps+RC filters with outstanding filtering performance have been widely researched. In this paper, the optimization of a multi-tuned filter with a low damping resistance and research on its corresponding control scheme have been combined to improve the performance of the proposed filter. Based on the characteristics of the switching harmonics produced by PWM, the proposed filter is optimized to further improve its filtering performance. When compared with the more common Traps+RC filter, the advantages of the proposed filter with low damping resistances in attenuating the major switching harmonics have been demonstrated. In addition, a simpler topology and reduced power loss can be achieved. On the other hand, to make the implementation of the proposed filter possible, on the base of the unique frequency response characteristic of the proposed filter, a digital single-loop control scheme has been proposed. This scheme is a simple and effective means to suppress the resonance peak caused by a lack of damping. Therefore, a smaller volume, better efficiency of the proposed filter, and easy implementation of the corresponding control scheme can be realized. Finally, the superiority of the proposed filter topology and control scheme is verified in experiments.

Mode Switching Smooth Control of Transient Process of Grid-Connected 400 Hz Solid-State Power Supply System

  • Zhu, Jun-Jie;Nie, Zi-Ling;Zhang, Yin-Feng;Han, Yi
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2327-2337
    • /
    • 2016
  • The mode-switching control of transient process is important to grid-connected 400 Hz solid-state power supply systems. Therefore, this paper analyzes the principle of on-grid and islanding operation of the system with or without local loads in the grid-connected process and provides a theoretical study of the effect of different switching sequences on the mode-switching transient process. The conclusion is that the mode switch (MS) must be turned on before the solid-state switch (STS) in the on-grid process and that STS must be turned off before the MS in the off-grid process. A strategy of mode-switching smooth control for transient process of the system is proposed, including its concrete steps. The strategy utilizes the average distribution of peak currents and the smooth adjustment of peak currents and phases to achieve a no-shock grid connection. The simulation and experimental results show that the theoretical analysis is correct and that the method is effective.

Development of a pulsed Nd:YAG laser materials processing system (정밀 용접용 펄스형 Nd:YAG 레이저 가공기 개발)

  • 김덕현;정진만;김철중;이종민
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 1991
  • A 200W pulsed Nd: YAG laser for fine welding was developed. The important laser parameters such as laser peak power, average power, pulse width, and pulse energy for welding were studied. In order to obtain the sufficient laser power density for welding, thermal lensing effects were analyzed and a laser resonator with laser beam divergence was designed. The power supply unit was designed to support up to 7kW input. The pulse control unit was developed using a GTO thyristor and could control over 100kW input power to obtain 3.5kW peak power laser. Also due to the GTO thyristor the pulse width could be varied continuously from 0.1 to 20 msec and maximum repetition rate was as high as 300pps.

  • PDF

Regulated Incremental Conductance (r-INC) MPPT Algorithm for Photovoltaic Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1544-1553
    • /
    • 2019
  • The efficiency of photovoltaic generation systems depends on the maximum power point tracking (MPPT) technique. Among the various schemes presented in the literature, the incremental conductance (INC) method is one of the most frequently used due to its superb tracking ability under changes in insolation and temperature. Generally, conventional INC algorithms implement a simple duty-cycle updating rule that is mainly found on the polarity of the peak-power evaluation function. However, this fails to maximize the performance in both steady-state and transient conditions. In order to overcome this limitation, a novel regulated INC (r-INC) method is proposed in this paper. Like the compensators in automatic control systems, this method applies a digital compensator to evaluate the INC function and improve the capability of power tracking. Precise modeling of a new MPPT system is also presented in the optimized design process. A 120W boost peak power tracker is utilized to obtain comparative test results and to confirm the superiority of the proposed method over existing techniques.

Approximate Model for Peak Demand Power Computation in Metro Railway with DC Rectifiers (DC정류기를 갖는 도시철도의 최대수요전력 산출 근사모델)

  • Kim, Han-Su;Kwon, Oh-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.372-378
    • /
    • 2013
  • This paper presents an approximate model for computing the peak demand power in a metro railway system. The peak demand of substations can be calculated using the current vector iteration method. But the existing method requires many repeated calculations to determine the peak demand power, which makes it difficult to apply to the real-time peak power control problem. In this paper, we assume that none of the conditions vary except source impedance and make an approximate model for rapid calculation based on changes in the impedance of the power substation. The proposed model result is approximately the same as the existing model, which is demonstrated through simulation.

Simulation and Energy Cost Calculation of Encapsulated Ice Storage System (캡슐형 빙축열시스템에 대한 운전 시뮬레이션 및 에너지비용 분석)

  • Lee, K.H.;Joo, Y.J.;Choi, B.Y.;Kim, S.J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.63-73
    • /
    • 1999
  • Ice storage systems are used to shift the peak load in day time into night time in summer. This paper describes a system simulation of partial ice storage system composed of an encapsulated ice storage tank, a screw compressor chiller, a heat exchanger, and a brine pump. For the system simulation, a one-dimensional model of ice storage tank is developed and validated by comparison with the performance data from measurements of an ice storage tank installed at a building. The control strategies considered in this study are chiller priority and storage priority being used commercially. The system is simulated with design cooling load of 600 RT peak load in design day and with off-design day cooling load, and the electric energy costs of the two control strategies for the same system size are compared. As a result of calculation, the energy consumption in a week for storage priority is higher than that for chiller priority control. However due to lower cost of night electric charge rate, energy cost for storage priority control is lower than chiller priority.

  • PDF

Program Cache Busy Time Control Method for Reducing Peak Current Consumption of NAND Flash Memory in SSD Applications

  • Park, Se-Chun;Kim, You-Sung;Cho, Ho-Youb;Choi, Sung-Dae;Yoon, Mi-Sun;Kim, Tae-Yun;Park, Kun-Woo;Park, Jongsun;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.876-879
    • /
    • 2014
  • In current NAND flash design, one of the most challenging issues is reducing peak current consumption (peak ICC), as it leads to peak power drop, which can cause malfunctions in NAND flash memory. This paper presents an efficient approach for reducing the peak ICC of the cache program in NAND flash memory - namely, a program Cache Busy Time (tPCBSY) control method. The proposed tPCBSY control method is based on the interesting observation that the array program current (ICC2) is mainly decided by the bit-line bias condition. In the proposed approach, when peak ICC2 becomes larger than a threshold value, which is determined by a cache loop number, cache data cannot be loaded to the cache buffer (CB). On the other hand, when peak ICC2 is smaller than the threshold level, cache data can be loaded to the CB. As a result, the peak ICC of the cache program is reduced by 32% at the least significant bit page and by 15% at the most significant bit page. In addition, the program throughput reaches 20 MB/s in multiplane cache program operation, without restrictions caused by a drop in peak power due to cache program operations in a solid-state drive.

An E-capless AC-DC CRM Flyback LED Driver with Variable On-time Control

  • Yao, Kai;Bi, Xiaopeng;Yang, Siwen
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • LED is a promising new generation of green lighting with the advantages of high efficiency, good optical performance, long lifetime and environmental friendliness. A pulsating current can be used to drive LEDs. However, current with a high peak-to-average ratio is unfavorable for LEDs. A novel control scheme for the ac-dc critical conduction mode (CRM) flyback LED driver is proposed in this paper. By using the input voltage, output voltage and average output current to control the turn-on time of the switch, the peak-to-average ratio of the output current can be reduced. The operation principle is analyzed and an implementation circuit is put forward. Experimental results show the effectiveness of the proposed scheme.

Peak Power Control for Improvement of Stability in Multi-core System (멀티코어 시스템의 안정성 향상을 위한 피크파워 제어 알고리즘)

  • Park, Sung-Hwan;Kim, Jae-Hwan;Ahn, Byung-Gyu;Jung, Il-Jong;Lee, Seok-Hee;Chong, Jong-Wha
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.747-748
    • /
    • 2008
  • In this paper, we propose a new algorithm for task scheduling consisting of subtask partitioning and subtask priority scheduling steps in order to keep the peak power under the system specification. The subtask partitioning stepis performed to minimize the idle operation time for processors by dividing a task into multiple subtasks using the least square method developed with power consumption pattern of tasks. In the subtask priority scheduling step, a priority is assigned to a subtask based on the power requirement and the power variation of subtask so that the peak power violation can be minimized and the task can be completed within the execution time deadline.

  • PDF