• Title/Summary/Keyword: Peak Load Contribution

Search Result 16, Processing Time 0.022 seconds

Contribution of Large-Scale PV Plants in the Respective Region of the Jeju Island to Electric Power during Summer Peak Times (제주도 지역별 대용량 태양광발전소들의 여름 피크타임 기여도 연구)

  • Baatarbileg, Ankhzaya;Ko, Suk-Young;SaKong, June;Kwon, Hoon;Lee, Gae-myoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1873-1878
    • /
    • 2017
  • Both the introduction of the Renewable Energy Portfolio Standard (RPS) system into the electric energy market in 2012 and a decrease in the cost of constructing photovoltaic (PV) power plants have been increasing the number of MW PV plants in South Korea. Jeju Island is located at the center of three nations, South Korea, China and Japan, and its provincial government declared in 2012 that the island will be a clean region where greenhouse gases are not emitted by 2030. The Jeju provincial government is now doing its best to install PV plants and wind farms to realize a carbon-free island. In this study we investigated contribution of MW PV plants to the power of the electric grid during summer peak times on Jeju Island. Mt. Halla the highest mountain in South Korea, is located at the center of Jeju Island, and we divided the island into four regions and carried out analyses of a total of 24 PV plants. The average contribution of the PV plants in the respective region to electric power of Jeju Island during summer peak times was investigated and compared with those of the other regions. The best average contribution during the 12.5% maximum load period was obtained from the PV plants in the western region, and the value was 33% during 2015 and 2016.

Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns

  • Pons, David;Espinos, Ana;Albero, Vicente;Romero, Manuel L.
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.705-717
    • /
    • 2018
  • This paper presents a numerical investigation on the mechanical performance of concrete-filled dual steel tubular columns of circular section subjected to concentric axial load. A three-dimensional numerical model is developed and validated against a series of experimental tests. A good agreement is obtained between the experimental and numerical results, both in the peak load value and in the ascending and descending branches of the load-displacement curves. By means of the numerical model, a parametric study is carried out to investigate the influence of the main parameters that determine the axial capacity of double-tube columns, such as the member slenderness, inner and outer steel tube thicknesses and the concrete grade - of both the outer concrete ring and inner core -, including ultra-high strength concrete. A total number of 163 numerical simulations are carried out, by combining the different parameters. Specific indexes are defined (Strength Index, Concrete-Steel Contribution Ratio, Inner Concrete Contribution Ratio) to help rating the relative mechanical performance of dual steel tubular columns as compared to conventional concrete-filled steel tubular columns, and practical design recommendations are subsequently given.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Analysis of the Load Contribution of Wind Power and Photovoltaic Power to Power System in Jeju (제주지역 풍력발전 및 태양광발전의 전력계통 부하기여 분석)

  • Myung, Ho-San;Kim, Hyung-Chyul;Kang, Nam-Ho;Kim, Yeong-Hwan;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • As part of the "Carbon free Island 2030" policy, the local government of Jeju Island is currently working to reduce carbon through renewable energy supply. However, renewable energy is difficult to predict due to intermittent characteristics. If the share of renewable energy increase, it is difficult to plan of supply of electricity to grid due to that characteristic of renewable. In this paper analyze the fluctuation rate and the capacity credit of wind power and PV to find out how much wind power and PV contribute to supply of electricity of power system in Jeju. As a result mean value of variation rate of wind power and PV is about 3%, 5% and capacity credit is about 10% and 2% respectively.

EMG Analysis of Lower Extremity Muscles under different heel types of shoes when performing Tango Backward Walk (탱고 backward walk 동작시 신발 굽 유형에 따른 하지의 근전도 분석)

  • Jeong, Mi-Ra;Seo, Kuk-Woong;Gang, Yeong-Teag;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.31-46
    • /
    • 2002
  • The purpose of this research is to provide scientific training guides and the basis for preventing injuries in performing tango backward walk by comparing the effects the height and shape of a heel will have on leg muscles and determining the difference between skilled and unskilled dancers through EMG analysis according to different types of shoes Total eight female athletes were selected for this research. Four with six years of professional dancing experience and another four with one year of dance sports experience. Utilizing the EMG system, rectus femoris, biceps femoris, anterior tibialis, gastrocnemius were measured under different heights (0cm, 5cm, 7cm, 9cm) and shapes (flat, fine, wide) of a heel. Experiments were conducted calculating EMG peak value and muscle load ration under different types of shoes in order to analyze the EMG of leg muscles and Erector Spinae when performing tango backward walk. The result was as follows: 1. The EMG peak value of leg muscles showed significant difference under different heights of a heel in anterior tibialis(p<.001) and gastrocnemius(p.<01) in case of skilled dancers, and in biceps femoris(p.<01) in case of unskilled dancers. 2. The EMG peak value of leg muscles showed significant difference under different shapes of a heel in anterior tibialis(p<.001) and gastrocnemius(p<.001) in case of skilled dancers, and showed no significant difference in case of unskilled dancers. 3. The muscle load ration of leg muscles showed different degrees of muscle contribution between skilled and unskilled dancers. The muscle load ration was in the order of anterior tibialis, rectus femoris, biceps femoris, and gastrocnemius in case of skilled dancers and anterior tibialis, gastrocnemius, biceps femoris, and rectus femoris in case of unskilled dancers.

Structural Performance of the RC Boundary Beam-Wall System Subjected to Axial Loads (축하중이 작용하는 철근 콘크리트 경계보-벽체 시스템의 압축성능 평가)

  • Han, Jin-Ju;Son, Hong-Jun;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.57-64
    • /
    • 2022
  • This study investigated the structural performance of the RC boundary beam-wall system subjected to axial loads that required lesser construction quantity and smaller floor height in comparison with the conventional RC transfer girder system. Four specimens of 1/2 scale were constructed, and their peak strengths under axial loads and failure characteristics were compared and analyzed. Test parameters included the ratio of the lower to the upper wall length, lower wall thickness, and stirrup details of the lower wall. In addition, three-dimensional nonlinear finite element analysis was performed to verify the effectiveness of the boundary beam-wall system. The peak strength of each specimen was similar to the nominal axial strength of the lower wall, indicating that the axial load was transferred smoothly from the upper to the lower wall. The contribution of the lower wall cross-section was high if the ratio of the lower to the upper wall length was small; the contribution was low if the out-of-plane eccentricity existed in the lower wall. The specimen with smaller stirrup distance and cross-ties in the lower wall showed higher initial stiffness and peak load than other specimens.

Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.591-601
    • /
    • 2019
  • This research study investigates experimentally and analytically the axial compressive behaviour of Concrete Filled Fiber Reinforced Polymer Tube (CFFT) columns with and without Fiber Reinforced Polymer (FRP) bars. The experimental program comprises five circular columns of 204-206 mm outer diameter and 800-812 mm height. All columns were tested under concentric axial compressive loads. It was found that CFFT columns with and without FRP bars achieved higher peak axial compressive loads and corresponding axial deformations than conventional steel reinforced concrete (RC) column. The contribution of FRP bars was about 12.1% of the axial compressive loads carried by CFFT columns reinforced with FRP bars. Axial load-axial deformation ($P-{\delta}$) curves of CFFT columns were analytically constructed, which mapped well with the experimental $P-{\delta}$ curves. Also, an equation was proposed to predict the axial compressive load capacity of CFFT columns with and without FRP bars, which adequately considers the contributions of the circumferential confinement provided by FRP tubes and lower ultimate strength of FRP bars in compression than in tension.

Evaluating pollution origins of runoff in urban area by stormwater (강우시 도시지역 강우 유출수 오염부하 기원평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.930-934
    • /
    • 2006
  • In this study, we conducted water-quality analysis of wastewater and in-situ flow measurement using automatic flow rate measuring instrument to identify characteristics of wastewater in urban areas, and collected samples in gutter fur storm water drain, rainfall bucket, and aqueduct of pipe from roof, and outfalls of basins to examine the contribution by pollution origins such as base wastewater, atmospheric washing, runoff by roof surface, runoff by road surface, erosion of sewer sediment. In the result, the concentration of pollutants reached peak in the beginning of rainfall due to first flush, was 3 to 10 times higher than average concentration of dry period, and was lower than that of dry period due to dilution of storm water. In the analysis of the contribution by pollution origins, the ratio of load by sewer sediment resuspension to the total pollution load was 54.6% fer COD, and 73.3% fur SS. Accordingly, we can reduce the total pollutant load by periodical dredging and washing of sewer sediment, and control the loadings by overflow of combined sewer overflows.

  • PDF

Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device (지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구)

  • Kim, Hwidong;Baek, Namchoon;Lee, Jinkook;Shin, Uchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF