• Title/Summary/Keyword: Pe

Search Result 2,426, Processing Time 0.025 seconds

Clinical Phenotype of a First Unprovoked Acute Pulmonary Embolism Associated with Antiphospholipid Antibody Syndrome

  • Na, Yong Sub;Jang, Seongsoo;Hong, Seokchan;Oh, Yeon Mok;Lee, Sang Do;Lee, Jae Seung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • Background: Antiphospholipid antibody syndrome (APS), an important cause of acquired thrombophilia, is diagnosed when vascular thrombosis or pregnancy morbidity occurs with persistently positive antiphospholipid antibodies (aPL). APS is a risk factor for unprovoked recurrence of pulmonary embolism (PE). Performing laboratory testing for aPL after a first unprovoked acute PE is controversial. We investigated if a specific phenotype existed in patients with unprovoked with acute PE, suggesting the need to evaluate them for APS. Methods: We retrospectively reviewed patients with PE and APS (n=24) and those with unprovoked PE with aPL negative (n=44), evaluated 2006-2016 at the Asan Medical Center. We compared patient demographics, clinical manifestations, laboratory findings, and radiological findings between the groups. Results: On multivariate logistic regression analysis, two models of independent risk factors for APS-PE were suggested. Model I included hemoptysis (odds ratio [OR], 12.897; 95% confidence interval [CI], 1.025-162.343), low PE severity index (OR, 0.948; 95% CI, 0.917-0.979), and activated partial thromboplastin time (aPTT; OR, 1.166; 95% CI, 1.040-1.307). Model II included age (OR, 0.930; 95% CI, 0.893-0.969) and aPTT (OR, 1.104; 95% CI, 1.000-1.217). Conclusion: We conclude that patients with first unprovoked PE with hemoptysis and are age <40; have a low pulmonary embolism severity index, especially in risk class I-II; and/or prolonged aPTT (above 75th percentile of the reference interval), should be suspected of having APS, and undergo laboratory testing for aPL.

Trophoblast Cell Subtypes and Dysfunction in the Placenta of Individuals with Preeclampsia Revealed by Single-Cell RNA Sequencing

  • Zhou, Wenbo;Wang, Huiyan;Yang, Yuqi;Guo, Fang;Yu, Bin;Su, Zhaoliang
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.317-328
    • /
    • 2022
  • Trophoblasts, important functional cells in the placenta, play a critical role in maintaining placental function. The heterogeneity of trophoblasts has been reported, but little is known about the trophoblast subtypes and distinctive functions during preeclampsia (PE). In this study, we aimed to gain insight into the cell type-specific transcriptomic changes by performing unbiased single-cell RNA sequencing (scRNA-seq) of placental tissue samples, including those of patients diagnosed with PE and matched healthy controls. A total of 29,006 cells were identified in 11 cell types, including trophoblasts and immune cells, and the functions of the trophoblast subtypes in the PE group and the control group were also analyzed. As an important trophoblast subtype, extravillous trophoblasts (EVTs) were further divided into 4 subgroups, and their functions were preliminarily analyzed. We found that some biological processes related to pregnancy, hormone secretion and immunity changed in the PE group. We also identified and analyzed the regulatory network of transcription factors (TFs) identified in the EVTs, among which 3 modules were decreased in the PE group. Then, through in vitro cell experiments, we found that in one of the modules, CEBPB and GTF2B may be involved in EVT dysfunction in PE. In conclusion, our study showed the different transcriptional profiles and regulatory modules in trophoblasts between placentas in the control and PE groups at the single-cell level; these changes may be involved in the pathological process of PE, providing a new molecular theoretical basis for preeclamptic trophoblast dysfunction.

Development of Thermoplastic Carbon Composite Hybrid Bipolar Plate for Vanadium Redox Flow Batteries (VRFB) (바나듐 레독스 흐름전지용 열가소성 탄소 복합재료 하이브리드 분리판 개발)

  • Jun Woo Lim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.422-428
    • /
    • 2023
  • The electrical contact resistance between the bipolar plate (BP) and the carbon felt electrode (CFE), which are in contact by the stack clamping pressure, has a great impact on the stack efficiency because of the relatively low clamping pressure of the vanadium redox flow battery (VRFB) stack. In this study, a polyethylene (PE) composite-CFE hybrid bipolar plate structure is developed through a local heat welding process to reduce such contact resistance and improve cell performance. The PE matrix of the carbon fiber composite BP is locally melted to create a direct contact structure between the carbon fibers of CFE and the carbon fibers of BP, thereby reducing the electrical contact resistance. Area specific resistance (ASR) and gas permeability are measured to evaluate the performance of the PE composite-CFE hybrid bipolar plate. In addition, an acid aging test is performed to measure stack reliability. Finally, a VFRB unit cell charge/discharge test is performed to compare and analyze the performance of the developed PE composite-CFE hybrid BP and the conventional BP.

Protective effect of Phyllostachys edulis (Carrière) J. Houz against chronic ethanol-induced cognitive impairment in vivo

  • Jiyeon Kim;Ji Myung Choi;Ji-Hyun Kim;Qi Qi Pang;Jung Min Oh;Ji Hyun Kim;Hyun Young Kim;Eun Ju Cho
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.464-478
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Chronic alcohol consumption causes oxidative stress in the body, which may accumulate excessively and cause a decline in memory; problem-solving, learning, and exercise abilities; and permanent damage to brain structure and function. Consequently, chronic alcohol consumption can cause alcohol-related diseases. MATERIALS/METHODS: In this study, the protective effects of Phyllostachys edulis (Carrière) J. Houz (PE) against alcohol-induced neuroinflammation and cognitive impairment were evaluated using a mouse model. Alcohol (16%, 5 g/kg/day for 6 weeks) and PE (100, 250, and 500 mg/kg/day for 21 days) were administered intragastrically to mice. RESULTS: PE showed a protective effect against memory deficits and cognitive dysfunction caused by alcohol consumption, confirmed through behavioral tests such as the T-maze, object recognition, and Morris water maze tests. Additionally, PE attenuated oxidative stress by reducing lipid oxidation, nitric oxide, and reactive oxygen species levels in the mice's brains, livers, and kidneys. Improvement of neurotrophic factors and downregulation of apoptosis-related proteins were confirmed in the brains of mice fed low and medium concentrations of PE. Additionally, expression of antioxidant enzyme-related proteins GPx-1 and SOD-1 was enhanced in the liver of PE-treated mice, related to their inhibitory effect on oxidative stress. CONCLUSION: This suggests that PE has both neuroregenerative and antioxidant effects. Collectively, these behavioral and histological results confirmed that PE could improve alcohol-induced cognitive deficits through brain neurotrophic and apoptosis protection and modulation of oxidative stress.

Storage characteristics of organic chicken stock containing plum extract and green tea powder

  • Na Young Choi;Sang Hoon Park;Gyu Tae Park;Yoon Hwan Park;Se Hyuk Oh;Yun A Kim;Tae Yeon Moon;Yang Il Choi;Jung Seok Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.1003-1014
    • /
    • 2022
  • This study investigated quality characteristics of chicken stock with added plum extract (PE) and green tea powder (GP) stock during storage. Plum extract (0, 0.5, 1, 3%) and green tea powder (0, 0.5, 1, 3%) were added at three levels. Chicken stock was stored at room temperature for 14 days. The pH of the chicken stock decreased significantly as the content of PE and GP increased (p < 0.05). The group with 3% plum extract added showed significantly lower pH values (p < 0.05). Total numbers of microorganisms (TMC) showed significant differences according to the storage period (p < 0.05), where the groups with PE and GP added showed lower TMC values than the control group, This indicates that PE and GP could inhibit the growth of microorganisms. The addition of 3% PE or GP decreased lipid oxidation (TBARS) and protein deterioration (VBN) values. In sensory test, the results showed that adding PE or GP has a positive effect on storage characteristics of chicken stock. The addition of PE rather than GP is effective not only in improving sensory evaluation, but also in minimizing changes in quality by suppressing lipid oxidation and protein deterioration during storage. In conclusion, 3% PE addition was found to be the most optimal supplementation choice for increasing the storability of chicken stock.

Improvement of Interfacial adhesion using Reactive Compatibilizer for PE/PLST blend (반응성 상용화제를 이용한 PE/PLST블렌드의 계면특성 향상)

  • 유승익;이한섭
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.448-451
    • /
    • 2001
  • 각각 소수성과 친수성을 나타내는 올레핀계 고분자인 PE 와 granule starch의 blend는 서로 다른 특성에 기인하여 거시적인 상분리 현상이 발현되며 두 물질간에 계면을 형성한다. 이와 같이 낮은 interfacial adhesion을 갖는 내부 구조는 외력에 대한 저항력이 급격히 저하되어 낮은 물성 특성을 나타낸다. (중략)

  • PDF

Influence of Post-planting Fertilizer Concentrations Supplied through Sub-irrigation in Winter Season Cultivation of Tomato on the Seedling Growth and Changes in the Chemical Properties of Root Media (저면관비 방법으로 동절기 토마토 육묘시 추비 농도가 묘 생장과 상토의 화학성 변화에 미치는 영향)

  • Park, In Sook;Shim, Chang Yong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This research was conducted to investigate the influence of post-planting fertilizer concentrations on the growth of seedlings and changes of nutrient concentrations of media in tomato seedling production through sub-irrigation. Two root media such as peat moss (grade of 0 to 6 mm, PM06) plus perlite (grade of 1 to 2 mm (PE2)(7:3, v/v) and peat moss (grade of 5 to 15 mm, PM515) plus PE2 (7:3, v/v) were formulated and filled into 72-cell plug trays. After seeds of 'Dotaerang Dia' tomato were sown and germinated at $28^{\circ}C$, the trays were moved to greenhouse and seedlings were raised 35 days. When the cotyledons were emerged, post-planting fertilizers of 13-2-13, 15-0-15 and 20-9-20 ($N-P_2O_5-K_2O$) were applied in a sequence. The fertilizer concentrations based on N in each plug stage were differed with $25mg{\cdot}L^{-1}$ in three treatments. The fertilizer solutions were supplied when the weight of plug trays decreased to 40 to 50% compared to container capacity. The root media were collected in 1, 2, 4, and 5 weeks after sowing and were divided into top, middle, and bottom parts, then were analysed for pH, EC and macro-nutrient concentrations. The seedling growth was investigated 5 weeks after sowing. The pH and EC in PM06+PE2 was higher than those of PM515+PE2. The bottom and mid-part had higher pH and lower EC compared to upper part in each medium. The differences of EC between upper and bottom parts were around 2 times in each medium. The $NH_4-N$ and K concentrations in program 3 of PM06+PE2 showed the highest concentrations among all treatments. The $NO_3-N$ concentrations in PM06+PE2 increased gradually and this rising tendency become severe as post-planting fertilizer concentrations were elevated. The seedling growth in terms of fresh and dry weights was the highest in the treatment of program 2 in PM06+PE2 among all treatments tested. Above results indicate that the gradual increases of fertilizer concentrations from 25 to $125mg{\cdot}L^{-1}$ in plug stages 2, 3, and 4 plug stages are desirable for

Efects of Biodegradable Mulching Films Containing Rice Powder on Sweetpotato Growth (쌀 분말이 함유된 생분해성 멀칭필름이 고구마 생육에 미치는 영향)

  • Sin Young Park;Ju Hyun Im;Eun Byul Go;Kil Ja Kim;Jae Min Park;Dong Kwan Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.123-132
    • /
    • 2024
  • In this study, two types of biodegradable film prototypes were produced using plastic resin containing rice powder. The application of these biodegradable films in sweetpotato (Ipomoea batatas L. Lam) fields and their impacts of plant growth, yield, and the soil environment were assessed, in comparison with Polyethylene (PE) film. The light transmittance of the biodegradable film containing 30% of 350 mesh rice powder (BF30-350RP) was 0.8%, which was lower than the 2.0% light transmittance of the biodegradable film containing 40% of 500 mesh rice powder (BF40-500RP) and 2.7% light transmittance of PE film. Surface temperature measurements on clear day indicated that the PE film exhibited the lowest temperature, with the minimal difference observed between BF40-500RP and BF30-350RP. Assessment of the damage ratio resulting from agricultural work revealed a ranking of 0.4% for the PE film, 3.3% for BF500-400RP, and 5.3% for BF350-30RP. Visible decomposition of BF40-500RP and BF30-350RP commenced after 40 and 30 days of outdoor exposure, reaching 62.3% and 70.4% decomposition at 90 days post-exposure, respectively. The decomposition of biodegradable films applied to sweetpotato fields progressed more slowly in BF40-500RP than in BF30-350RP. The BF40-500RP film on the surface of the ridges was decomposed by 5%, 30%, 55%, and 90% after 30, 60, 90, and 120 days after planting sweetpotato cuttings, respectively. Both types of biodegradable films at the ridge and furrow borders were completely decomposed after 75 days of sweetpotato planting. In a field where the surface was sealed by mulching without growing sweetpotatoes, the soil moisture and its deviation were lower in the order of PE film, BF40-500RP, and BF30-350RP, but the differences were not significant. The soil temperature was higher for PE film mulching than for the biodegradable films containing rice powder, but the differences were small. Two months after sweetpotato planting, the daily average soil moisture decreased by 2.5%point for BF30-350RP mulching, 1.5%point for BF40-500RP mulching, and 1.1%point for PE film mulching over seven days. Soil temperature was similar for both biodegradable film mulches, but increased steadily for the PE film mulch, reaching a daily average of 0.1℃ higher than for the biodegradable films. Sweetpotato vine growth and tuber yield were similar for all the mulching films tested.

Anti-tumor Effects of Exo- and Endo-biopolymers Produced from Submerged Cultures of Three Different Mushrooms

  • Jeong, Yong-Tae;Yang, Byung-Keun;Li, Chun-Ru;Song, Chi-Hyun
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.106-109
    • /
    • 2008
  • The anti-tumor effects of exo- (EX) and endo-biopolymers (EN) produced from submerged mycelial cultures of Ganoderma applanatum (GA), Collybia confluens (CC), and Pleurotus eryngii (PE) were studied using Sarcoma 180 bearing mice. Solid tumor growth was inhibited most effectively when 40 mg/kg body weight (BW) of GA-EX or PE-EN was administered to the intraperitoneal (i.p.) cavity of BALB/c mice. The spleen and liver indexes were increased in mice following i.p. administration of GA-EX and PE-EN fractions. GA-EX and PE-EN reduced the tumor formation by 30.7% and 29.4%, respectively. GA-EX and PE-EN increased the natural killer (NK) cell activity of splenocytes by 41.3% and 28.9%, respectively.

A Study on the Recycling Method of Vehicle Mat Residual Product (자동차 내장매트 부산물의 재활용방안에 관한 연구)

  • Jang, Seong-Ho;Park, Gil-Pyeong;Park, Jin-Sik
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1199-1203
    • /
    • 2006
  • This paper analyzes the separation efficiency of vehicles mat residual product, and caloric value, element analysis and heavy metal of separated PE & PVC mat residual product. A results of separation efficiency, fiber fraction of PE & PVC mat residual product was analyzed 71.9% and 18.6%, respectively. Caloric value of PE & PVC mat residual product was analyzed 3,894kca1/kg and 10,203kca1/kg, respectively. A results of element analysis, main component of PVC mat were carbon(33.2%) and oxygen(21.0%), and main component of PE mat fiber were carbon(75.4), hydrogen(11.3%) and oxygen(9.1%). Lead and cadmium concentration of PVC powder was detected 98.9mg/kg and 19.8mg/kg, but Lead and cadmium concentration of fiber was detected 15.7mg/kg and 6.1mg/kg.