• Title/Summary/Keyword: Pd/$Al_2O_3$-BaO

Search Result 4, Processing Time 0.019 seconds

Highly Selective Amination of o- and p-Alkyl Phenols over Pd/Al2O3-BaO

  • Ma, Jianchao;Wang, Huabang;Sun, Meng;Yang, Fan;Wu, Zhiwei;Wang, Donghua;Chen, Ligong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.387-392
    • /
    • 2012
  • A series of Pd-based catalysts were prepared and examined for the amination of 2,6-dimethylphenol in a fixedbed reactor. The best results were obtained for Pd/$Al_2O_3$-BaO with a conversion of 99.89% and a selectivity of 91.16%. These catalysts were characterized using BET, XRD, XPS, TEM and $NH_3$-TPD. Doped BaO not only improved the dispersion of the Pd particles but also decreased the acidity of the catalyst, which remarkably enhanced the selectivity and stability of the catalyst. The generality of Pd/$Al_2O_3$-BaO for this kind of reaction was demonstrated by catalytic aminations of o- and p-alkyl phenols.

Impedance spectroscopy analysis of the $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films

  • Ham, Yong-Su;Go, Jung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.27-28
    • /
    • 2009
  • In this study, we have fabricated the 3 wt% $Li_2CO3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd printed $Al_2O_3$ substrates for the LTCCs (Low Temperature Co-fired Ceramics) applications. From the X-ray diffraion analysis, 3 wt% $Li_2CO3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at 900 $^{\circ}C$ have perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO3$ doped BST thick films were measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO3$ doped BST thick films, we employed the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO3$ doped BST thick films were measured from 20 Hz to 1 MHz at the various temperatures.

  • PDF

Impedance Spectroscopy Analysis of the Screen Printed Thick Films (스크린 프린트된 후막의 Impedance Spectroscopy 특성 분석)

  • Ham, Yong-Su;Moon, Sang-Ho;Nam, Song-Min;Lee, Young-Hie;Koh, Jung-Hyuk;Jyoung, Soon-Jong;Kim, Min-Soo;Cho, Kyung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.477-480
    • /
    • 2010
  • In this study, we fabricate 3 wt% $Li_2CO_3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd bottom electrode printed $Al_2O_3$ substrates for the LTCCs (low temperature co-fired ceramics) applications. From the X-ray diffraction analysis, 3 wt% $Li_2CO_3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at $900^{\circ}C$, showed perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO_3$ doped BST thick films, we employ the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 20 Hz to 1 MHz at the various temperatures.

EVALUATION OF NOx REDUCTION CATALYST BY MODEL GAS FOR LEAN-BURN NATURAL GAS ENGINE

  • LEE C. H.;CHO B. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.591-598
    • /
    • 2005
  • A three-way catalyst system of a natural gas vehicle (NGV) has characteristics of higher fuel consumption and higher thermal load than a lean-bum catalyst system. To meet stringent emission standards in the future, NGV with the lean-bum engine may need a catalyst system to reduce the amounts of HC, CO and NOx emission, although natural gas system has low emission characteristics. We conducted experiments to evaluate the conversion efficiency of the NOx reduction catalyst for the lean-burn natural gas engine. The NOx reduction catalysts were prepared with the ${\gamma}-Al_{2}O_3$ washcoat including Ba based on Pt, Pd and Rh precious metal. In the experiments, effective parameters were space velocity, spike duration of the rich condition, and the temperature of flowing model gas. From the results of the experiments, we found that the temperature for maximum NOx reduction was around $450^{\circ}C$, and the space velocity for optimum NOx reduction was around $30,000\;h^{-1}$ And we developed an evaluation model of the NOx reduction catalyst to evaluate the conversion performance of each other catalysts.