• Title/Summary/Keyword: Pcdh7

Search Result 3, Processing Time 0.02 seconds

Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation

  • Kim, Hyunsoo;Takegahara, Noriko;Walsh, Matthew C.;Ueda, Jun;Fujihara, Yoshitaka;Ikawa, Masahito;Choi, Yongwon
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.472-477
    • /
    • 2020
  • Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NF-κB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis.

Analysis of gene expression during mineralization of cultured human periodontal ligament cells

  • Choi, Hee-Dong;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.30-43
    • /
    • 2011
  • Purpose: Under different culture conditions, periodontal ligament (PDL) stem cells are capable of differentiating into cementoblast-like cells, adipocytes, and collagen-forming cells. Several previous studies reported that because of the stem cells in the PDL, the PDL have a regenerative capacity which, when appropriately triggered, participates in restoring connective tissues and mineralized tissues. Therefore, this study analyzed the genes involved in mineralization during differentiation of human PDL (hPDL) cells, and searched for candidate genes possibly associated with the mineralization of hPDL cells. Methods: To analyze the gene expression pattern of hPDL cells during differentiation, the hPDL cells were cultured in two conditions, with or without osteogenic cocktails (${\beta}$-glycerophosphate, ascorbic acid and dexamethasone), and a DNA microarray analysis of the cells cultured on days 7 and 14 was performed. Reverse transcription-polymerase chain reaction was performed to validate the DNA microarray data. Results: The up-regulated genes on day 7 by hPDL cells cultured in osteogenic medium were thought to be associated with calcium/iron/metal ion binding or homeostasis (PDE1A, HFE and PCDH9) and cell viability (PCDH9), and the down-regulated genes were thought to be associated with proliferation (PHGDH and PSAT1). Also, the up-regulated genes on day 14 by hPDL cells cultured in osteogenic medium were thought to be associated with apoptosis, angiogenesis (ANGPTL4 and FOXO1A), and adipogenesis (ANGPTL4 and SEC14L2), and the down-regulated genes were thought to be associated with cell migration (SLC16A4). Conclusions: This study suggests that when appropriately triggered, the stem cells in the hPDL differentiate into osteoblasts/cementoblasts, and the genes related to calcium binding (PDE1A and PCDH9), which were strongly expressed at the stage of matrix maturation, may be associated with differentiation of the hPDL cells into osteoblasts/cementoblasts.

Association of Low Serum Ionized Magnesium Level with Fever-Triggered Seizures in Epileptic Children (소아 뇌전증 환자에서 발열이 동반된 경련을 하는 것과 저 이온화 마그네슘 혈증과의 관련성)

  • Suh, Sunny;Kim, Kyungju;Byeon, Jung Hye;Eun, So-Hee;Eun, Baik-Lin;Kim, Gun-Ha
    • Journal of the Korean Child Neurology Society
    • /
    • v.26 no.4
    • /
    • pp.205-209
    • /
    • 2018
  • Purpose: Several studies have shown that magnesium plays an important role in modulating N-methyl-D-aspartate (NMDA)-related seizures by blocking NMDA ion channel receptors. Clinicians usually measure total serum magnesium levels instead of biologically active ionized magnesium levels. We compared the serum ionized magnesium ($iMg^{2+}$) level between epileptic children with and without a history of fever-triggered seizure (FTS). Methods: All epileptic children who visited the outpatient clinic or pediatric emergency department at Korea University Guro Hospital between January 2015 and July 2017 were included. Only epileptic children aged 1-8 years who were newly diagnosed within 2 years were included. Results: There were 12 children with FTS and 16 without FTS. Median serum $iMg^{2+}$ level was 0.93 (0.85-1.14, quartile) mEq/L. Serum $iMg^{2+}$ level was significantly lower in epileptic children with FTS (0.86 mEq/L) compared to those without FTS (1.10 mEq/L) (P=0.005). No difference was noted in clinical variables between the two groups. Lower serum $iMg^{2+}$ level significantly increased the risk of having FTS in epileptic children based on multivariable logistic regression analysis (odds ratio [OR]=0.028). Conclusion: Serum $iMg^{2+}$ level was significantly lower in epileptic children with FTS than in those without FTS. Measurement of biologically active serum $iMg^{2+}$ level could be considered in epileptic children with recurrent FTS. A large-scale prospective study is warranted.