• Title/Summary/Keyword: Pb addition

Search Result 749, Processing Time 0.03 seconds

Dielectric and Piezoelectric Characteristics of $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ Ceramics with the amount of $Bi_2O_3$ addition ($Bi_2O_3$ 첨가량에 따른 $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Lee, Sang-Ho;Yoo, Ju-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.292-293
    • /
    • 2007
  • In the study, in order to develop low temperature sintering ceramics for multilayer piezoelectric transformer, $(Pb,Ca,Sr)Ti(Mn,Sb)O_3$ ceramics were fabricated using $Na_2CO_3$, $Li_2CO_3$, $MnO_2$ and $Bi_2O_3$ as sintering aids and their dielectric and piezoelectric properties were investigated according to the amount of $Bi_2O_3$ addition. At the sintering temperature of $900^{\circ}C$, density, thickness vibration mode electromechanical coupling factor ($k_t$), thickness vibration mode mechanical quality factor ($Q_{mt}$) and dielecteic constant (${\varepsilon}_r$) showed the optimum value of $6.94[g/cm^3]$, 0.497, 3,162 and 209, respectively, for multilayer piezoelectric transformer application.

  • PDF

Effect of Cu Containing Solders on Shear Strength of As-soldered BGA Solder Joints (BGA 솔더 조인트의 전단강도에 미치는 Cu 첨가 솔더의 영향)

  • 신창근;정재필;허주열
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.13-19
    • /
    • 2000
  • Shear strengths of BGA solder joints on Cu pads were studied for Cu-containing Sn (0, 1.5, and 2.5 wt.% Cu) and Sn-40Pb (0 and 0.5wt.% Cu) solders, with emphasis on the roles of the Cu-Sn intermetallic layer thickness and the roughness of the interface between the intermetalic layer and solder. The shear strength test was performed for as-soldered solder joints with various soldering reaction times up to 4 min. The addition of Cu to the pure Sn solder results in an enhanced growth of the intermetallic layer whereas the effect of Cu addition to the Sn-40Pb solder is primarily on the reduction of the roughness of the intermetallic/solder interface. The critical thickness of the intermetallic layer for a maximum shear strength depends on the solder materials, which was measured to be ~ 2.3 $\mu\textrm{m}$ for Sn-Cu solders and ~ 1.2 $\mu\textrm{m}$ for Sn-Pb-Cu solders. The shear strength at the critical intermetallic layer thickness seems to increase as the intermetallic/solder interface becomes rougher. This is in accordance with the observation that the sheared fracture occurred initially within the solder tends to shift towards the intermetallic/solder interface as the intermetallic layer grows above the critical thickness.

  • PDF

Dielectric and Piezoelectric Properties of 0.96 Pb(Zr0.52Ti0.48)O3-0.04 Pb(Mn,W,Sb,Nb)O3Ceramics with Ag2O Addition (Ag2O첨가에 따른 0.96 Pb(Zr0.52Ti0.48)O3-0.04 Pb(Mn,W,Sb,Nb)O3의 유전 및 압전 특성)

  • Chung, Hyun-Woo;Lim, Sung-Hun;Lee, Eun-Sun;Jeon, Chang-Sung;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1174-1177
    • /
    • 2004
  • The dielectric and piezoelectric properties of silver added 0.96 Pb(Z $r_{0.52}$ $Ti_{0.48}$) $O_3$-0.04 Pb(Mn,W,Sb,Nb)$_3$ ceramics were examined. By varying the contents of silver(0.0, 0.4, 1.0 mol%), the effect of silver addition on PZT-PMWSN ceramics was investigated at various sintering temperature(900, 1000, 1100 $^{\circ}C$). As increasing silver contents, the relative dielectric constant was increased and sinterability was enhanced. At the specimen with 0.4 mol% Ag and sintered at 1000 $^{\circ}C$, electromechanical coupling factor( $k_{p}$), mechanical quality factor( $Q_{m}$), dielectric constant($\varepsilon$$_{r}$) and dielectric loss were 0.502, 811, 991, 0.006, respectively. The results showed that the PZT-PMWSN/Ag composites have enhanced piezoelectic and dielectric properties and sintering temperature was lowered.red.

Optical Properties of Sn-doped CH3NH3PbBr3 Perovskite Nanoparticles (Sn 첨가에 따른 CH3NH3PbBr3 페로브스카이트 나노입자의 광학적 특성)

  • Sihn, Moon Ryul;Jeon, Mingi;Park, Hyerin;Choi, Jihoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • Methylammonium lead bromide ($MAPbBr_3$) has attracted a lot of attention due to their excellent optoelectronic properties such as the compositional flexibility relevant to photoluminescence (PL) and UV-Vis absorbance spectrum, high diffusion length, and photoluminescence quantum yield (PLQY). Despite such advantages of organic-inorganic perovskite materials, more systematic study on manipulation of their optoelectronic properties in homo- or heterovalent metal ions doped halide perovskite nanocrystals is lacking. In this study, we systematically investigated the optical properties of colloidal $CH_3NH_3Pb_{1-x}Sn_xCl_{2x}Br_{3-2x}$ particles by addition of $SnCl_2$ into the typical methylammonium lead tribromide ($CH_3NH_3PbBr_3$) precursor solution. We found that only 1% addition of $SnCl_2$ shows a significant blue-shift from 540 nm to 420 nm in UV-Vis absorbance spectrum due to the strong quantum confinement effect. Furthermore, continuous blue-shift in photoluminescence spectra was observed as the amount of Cl increases. These experimental results provide new insights into the replacement of Pb within $MAPbBr_3$, required for the broadening of their application.

Shortwave Infrared Photodetector based on PbS Quantum Dots for Eye-Safety Lidar Sensors (Eye safety 라이다 센서용 황화납 양자점 기반 SWIR photodetector 개발)

  • Suji Choi;JinBeom Kwon;Yuntae Ha;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.285-289
    • /
    • 2023
  • Recently, the demand for lidar systems for autonomous driving is increasing, and research on Shortwave Infrared(SWIR) photodetectors for this purpose is being actively conducted. Most SWIR photodetectors currently being developed are based on InGaAs, and have the disadvantages of complex processes, high prices, and limitations in research due to monopoly. In addition, current SWIR photodetectors use lasers in the 905 nm wavelength band, which can pass through the pupil and cause damage to the retina. Therefore, it is required to develop a SWIR photodetector using a wavelength band of 1400 nm or more to be safe for human eyes, and to develop a material that can replace the proprietary InGaAs. PbS QDs are group 4-6 compound semiconductors whose absorption wavelength band can be adjusted from 1000 to 2700 nm, and have the advantage of being simple to process. Therefore, in this study, PbS QDs having an absorption wavelength peak of 1415 nm were synthesized, and a SWIR photodetector was fabricated using this. In addition, the photodetector's responsivity was improved by applying P3HT and ZnO NPs to improve electron hole mobility. As a result of the experiment, it was confirmed that the synthesized PbS QDs had excellent FWHM characteristics compared to commercial PbS QDs, and it was confirmed that the photodetector had a maximum current change of about 1.6 times.

First-Principles Investigation on the Electromechanical Properties of Monolayer 1H Pb-Dichalcogenides

  • Nguyen Hoang Linh;Nguyen Minh Son;Tran The Quang;Nguyen Van Hoi;Vuong Thanh;Do Van Truong
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.189-194
    • /
    • 2023
  • This study uses first-principles calculations to investigate the mechanical properties and effect of strain on the electronic properties of the 2D material 1H-PbX2 (X: S, Se). Firstly, the stability of the 1H Pb-dichalcogenide structures was evaluated using Born's criteria. The obtained results show that the 1H-PbS2 material possesses the greatest ideal strength of 3.48 N/m, with 3.68 N/m for 1H-PbSe2 in biaxial strain. In addition, 1H-PbS2 and 1H-PbSe2 are direct semiconductors at equilibrium with band gaps of 2.30 eV and 1.90 eV, respectively. The band gap was investigated and remained almost unchanged under the strain εxx but altered significantly at strains εyy and εbia. At the fracture strain in the biaxial direction (19 %), the band gap of 1H-PbS2 decreases about 60 %, and that of 1H-PbSe2 decreases about 50 %. 1H-PbS2 and 1H-PbSe2 can convert from direct to indirect semiconductor under the strain εyy. Our findings reveal that the two structures have significant potential for application in nanoelectronic devices.

A Study on the Effect of Electrolyte Additives on Zn Electrode with Pb3O4 in Zn-AgO Secondary Battery System (Zn-AgO 이차 전지에서 Pb3O4가 첨가된 아연 전극에 미치는 전해질 첨가제의 영향에 관한 연구)

  • Park, Kyung-Wha;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.242-249
    • /
    • 2003
  • Zn electrode was widely used as an anode material in alkaline battery systems in highly concentrated KOH electrolyte, however it was well known that its cycle life is significantly shortened by growth of dendrite due to the high dissolution of $Zn(OH)_2$ and rapid electrochemical reaction. In this study when by the additives such as $Ca(OH)_2$, Citrate, tartrate and Gluconate were added to $40\%$ KOH electrolyte at solution temperature of $25^{\circ}C$ and the amount of $5wt\%\;Pb_3O_4$ was mixed to Zn electrode and then the effect of $Pb_3O_4$ and additives on the electrochemical behavior of Zn electrode was investigated by Potentiodynamic Polarization Curves, Cyclic Voltammetry, Accelerated Life Cycle lest, and SEM image analyses. The addition of $Pb_3O_4$ reduced the corrosion rate of Zn electrode. The corrosion potential of Zn electrode with $Pb_3O_4$ was higher or lower than that of pure Zn electrode however was not influenced practically to the open circuit voltage. And the addition of 4 type additives had an important role in improving both cycle life in accelerated cycle life test and corrosion resistance. Furthermore the additive of Tartrate indicated comparatively a good effect to corrosion resistance as well as charging-discharging property Improvement among those four type additives.

Pyroelectric Properties of Modified PZT Ceramics with $MnO_2$ Addition (Mn Oxide의 첨가에 따른 PSS-PT-PZ 세라믹의 초전특성)

  • Shin, Sang-Hyun;Kim, Young-Hun;Park, Ki-Woon;Kang, Dong-Heon;Kim, Young-Ho;Kil, Sang-Kun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.746-748
    • /
    • 2002
  • The effect of $MnO_2$ addition in $0.05Pb(Sn_{0.5}Sb_{0.5})O_3-0.8PbZrO_3-0.15PbTiO_3$(0.05PSS-0.8PZ-0.15PT) ceramics on crystal structure and electrical properties were studied. The sintering temperature and time were $1230^{\circ}C{\sim}1270^{\circ}C$ and 2hr, respectively. Then crystal structure, dielectric and pyroelectric properties were investigated. All the poled specimens showed the lower dielectric constant and $tan{\delta}$ than the unpoled specimens. Dielectric constant at 1kHz of the 0.05PSS-0.8PZ-0.15PT(MnO2 0.3wt%) system specimen sintered at $1250^{\circ}C$ for 2hr were 270 and showed the lowest $tan{\delta}$ of 0.2% after poling of $2kV_{DC}/mm$ at $150^{\circ}C$ for 30 minutes. Pyroelectric coefficient was maximum value of $50nC/cm^2K$ and Curie temperature was $224^{\circ}C$.

  • PDF

Dielectric and Piezoelectric Properties of Low Temperature Sintering PZN-PZT Ceramics with a variation of $Li_2CO_3$ Addition ($Li_2CO_3$ 첨가에 따른 저온소결 PZN-PZT 세라믹스의 유전 및 압전특성)

  • Lee, Yu-Hyong;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.307-307
    • /
    • 2007
  • 압전액츄에이터 및 초음파진동자는 전자제품의 소형화 및 경량화, 의료기기, 모바일기기 및 소형로붓의 발전에 힘입어 그 활용범위가 넓게 확장되고 있다. 1960년 Smolenski등에 의해 $A(B_1,B_2)O_3$형 복합 페로브스카이트 구조를 갖는 강유전성 세라믹스에 대한 연구가 시작된 이래 $Pb(Co,Nb)O_3-Pb(Zr,Ti)O_3$, $Pb(Zn,Nb)O_3-Pb(Zr,Ti)O_3$, $Pb(Mg,Nb)O_3-Pb(Zr,Ti)O_3$ 등 3성분계 세라믹스의 유전, 압전 및 강유전 특성에 대한 많은 연구가 진행되어 왔다. 그러나 압전성이 우수한 세라믹스들은 Pb가 포함되어 있기 때문에 $1000^{\circ}C$ 이상에서 PbO가 급격하게 휘발되는 성질에 따라서 조성의 변동이 생겨 재현성이 어려우며 이를 방지하기 위하여 과잉 PbO를 첨가시키기 때문에 환경오염뿐만 아니라, 경제적인 측면에서도 많은 문제점을 가지고 있다. 소결조제를 이용한 산화물 첨가법은 PbO의 휘발을 억제하는 저온소결 방법중 가장 효과적인 방법으로 알려져 있다. 따라서, 본 연구에서는 적층형 압전액츄에이터로 사용하기위한 저온소결 압전세라믹스를 개발하기 위하여 PZN-PZT세라믹스에 $Li_2CO_3$, $Bi_2O_3$, CuO 를 소결조제로 사용하여 $Li_2CO_3$의 첨가량 변화에 따른 압전 및 유전 특성을 관찰하였다.

  • PDF

Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering

  • Sheikh, Md. Abdul Kuddus;Abdur, Rahim;Singh, Son;Kim, Jae-Hun;Min, Kyeong-Sik;Kim, Jiyoung;Lee, Jaegab
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.700-711
    • /
    • 2018
  • CdS synthesized by the chemical bath method at $70^{\circ}C$, has been used as an electron transport layer in the planar structure of the perovskite solar cells. A two-step spin process produced a mixed halide perovskite of $CH_3NH_3PbI_{3-x}Cl_x$ and a mixture of $PbCl_2$ and $PbI_2$ was deposited on CdS, followed by a sub-sequential reaction with MAI ($CH_3NH_3I$). The added $PbCl_2$ to $PbI_2$ in the first spin-step affected the structure, orientation, and shape of lead halides, which varied depending on the content of Cl. A small amount of Cl enhanced the surface morphology and the preferred orientation of $PbI_2$, which led to large and uniform grains of perovskite thin films. In contrast, the high content of Cl produces a new phase PbICl in addition to $PbI_2$, which leads to the small and highly uniform grains of perovskites. An improved surface coverage of perovskite films with the large and uniform grains maximized the performance of perovskite solar cells at 0.1 molar ratio of $PbCl_2$ to $PbI_2$. The depth profiling of elements in both lead halide films and mixed halide perovskite films were measured by Rutherford backscattering spectroscopy, revealing the distribution of chlorine along with the thickness, and providing the basis for the mechanism for enhanced preferred orientation of lead halide and the microstructure of perovskites.