• Title/Summary/Keyword: Payload

Search Result 1,078, Processing Time 0.034 seconds

Reversible Data Hiding in Block Truncation Coding Compressed Images Using Quantization Level Swapping and Shifting

  • Hong, Wien;Zheng, Shuozhen;Chen, Tung-Shou;Huang, Chien-Che
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2817-2834
    • /
    • 2016
  • The existing reversible data hiding methods for block truncation coding (BTC) compressed images often utilize difference expansion or histogram shifting technique for data embedment. Although these methods effectively embed data into the compressed codes, the embedding operations may swap the numerical order of the higher and lower quantization levels. Since the numerical order of these two quantization levels can be exploited to carry additional data without destroying the quality of decoded image, the existing methods cannot take the advantages of this property to embed data more efficiently. In this paper, we embed data by shifting the higher and lower quantization levels in opposite direction. Because the embedment does not change numerical order of quantization levels, we exploit this property to carry additional data without further reducing the image quality. The proposed method performs no-distortion embedding if the payload is small, and performs reversible data embedding for large payload. The experimental results show that the proposed method offers better embedding performance over prior works in terms of payload and image quality.

Design of Deterministic Task Scheduling Software for MSC

  • Heo, Haeng-Pal;Yong, Sang-Soon;Kong, Jong-Pil;Kim, Young-Sun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.241-241
    • /
    • 2002
  • MSC(Multi-Spectral Camera) is a main payload of KOMPSAT(Korea Multi-Purpose Satellite)-II which will be launched in 2004. MSC will perform his mission with the GSD(Ground Sample Distance) of 1m, swath width of 15km and spectral range of 450nm~900nm at the altitude of 685km. MSC consists of three main subsystems. One is EOS(Electro-Optics Subsystem), another is PMU(Payload Management Unit) and the other is PDTS(Payload Data Transmission Subsystem). There is an SBC(Single Board Computer) in the PW to control all the other units and SBC software performs the interface with spacecraft and control all MSC sub-units. SBC software consists of a lot of tasks and manages them with the time criticalness. All tasks are designed to be scheduled and executed at the predetermined time in order to make sure that the mission of MSC system is achieved successfully. In this paper, the real-time task scheduling of the SBC software will be described and analyzed.

  • PDF

QUICK-LOOK TEST OF KOMPSAT-2 FOR IMAGE CHAIN VERIFICATION

  • Lee Eung-Shik;Jung Dae-Jun;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.509-511
    • /
    • 2005
  • KOMPSAT -2 equipped with an optical telescope(MSC) will be launched in this year. It can take images of the earth with push-broom scanning at altitude 685Km. Its resolution is 1m in panchromatic channel with a swath width of 15 km After the MSC is tested and the performance is measured at instrument level, it is installed on satellite. The image passes through the electro-optical system, compression and storage unit and fmally downlink sub-systems. This integration procedure necessitates the functional test of all subsystems participating in the image chain. The objective of functional test at satellite level(Quick Look test) is to check the functionality of image chain by real target image. Collimated moving image is input to the EOS in order to simulate the operational environments as if KOMPSAT -2 is being operated in orbit. The image chain from EOS to data downlink subsystem will be verified through Quick Look test. This paper explains the Quick Look test of KOMPSAT -2 and compares the taken images with collimated input ones.

  • PDF

A Modified SweepSAR Mode with Dual Channels for High Resolution and Wide Swath

  • Yoon, Seong Sik;Lee, Jae Wook;Lee, Taek-Kyung;Ryu, Sang-burm;Lee, Hyeon-Cheol;Lee, Sang Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • In this study, an imaging mode of the modified SweepSAR is proposed with performance analysis for a high-resolution and wide swath coverage. To reduce the overall antenna size required for the solution of the azimuth ambiguity problem, different pulse repetition frequencies (PRFs) are utilized for different transmitters, respectively. For each imaging mode, system performance parameters are used for simulation, analysis, wide swath prediction, and comparison between conventional ScanSAR mode and SweepSAR mode based on scanon-receive (SCORE). The system parameters of AASR, RASR, and NESZ will be estimated and suggested on the imaging mode by using appropriate reflector antenna with the effectiveness of a modified SweepSAR employing dual channels.

Automatic Payload Signature Generation System (페이로드 시그니쳐 자동 생성 시스템)

  • Park, Cheol-Shin;Park, Jun-Sang;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.8
    • /
    • pp.615-622
    • /
    • 2013
  • Fast and accurate signature extraction is essential to improve the performance of the payload signature-based traffic analysis methods. However the slow manual process in extracting signatures make difficult to deal with the rapidly changing application in current Internet environment. Therefore, in this paper we propose a system automatically generating signatures from ground-truth traffic data. In addition, we improve the efficiency of signature extraction by recognizing the application protocol using a protocol filters and generating signatures automatically according to the application-specific protocol contents. In order to verify the validity of the system proposed in this paper, we compared the signatures automatically generated from our system with the signatures manually created for a few popular applications.

FLOW ANALYSIS OF THE ON-BOARD SYSTEM FOR THE AIR SUPPLY TO THE PAYLOAD FAIRING OF A LAUNCH VEHICLE (발사체 탑재물 페어링 내부 공기 공급을 위한 탑재 시스템 유동 해석)

  • Ok H.;Kim Y.;Kim I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.269-273
    • /
    • 2005
  • The on-board system for the air supply to the payload fairing(PLF) of a launch vehicle using both high and low pressure air was designed. The design concept was obtained from the CFD analysis of a Russian interstage air supply system, and a collector was adopted to expand the high pressure air. To verify that the on-board system would work as designed, a simplified axisymmetric computational model was made and a CFD analysis was also performed. It was found that the flow ejected from the hole of the collector expands to the Mach number of 4 and is soon retarded due to the action of viscosity. It was also found that a small gap between the low pressure duct and equipment bay wall can cause large velocity in PLF over the velocity requirement and no gap should be allowed in the design.

  • PDF

COMS(Communication, Ocean color & Meteorological Satellite) Meteorological Imager Interface Unit(MI2U) Design (통신해양기상위성의 기상 탑재체 접속장치 설계)

  • Chae, Tae-Byeong
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.38-44
    • /
    • 2006
  • The COMS(Communication, Ocean & Meteorological Satellite) is the geostationary satellite which will be performing three main objectives such as meteorological service, ocean monitoring and Ka-band satellite communications. In order to accomplish these missions, the COMS system needs to implement a specific electrical/mechanical interface functions which are requested by each payload units. This paper describes a on-board interface hardware design for COMS Meteorological Imager(MI). The Meteorological Imager Interface Unit(MI2U) achieves, through MIL-STD-15533 system bus, the interface between the Spacecraft Computer Unit(SCU) and the instrument which is dedicated to MI. MI2U provides a necessary power input to MI from +50V Power Supply Regulator(PSR), and allows adaptation of the specific payload interfaces and protocol to COMS spacecraft.

  • PDF

Performance Improvement of Signature-based Traffic Classification System by Optimizing the Search Space (탐색공간 최적화를 통한 시그니쳐기반 트래픽 분석 시스템 성능향상)

  • Park, Jun-Sang;Yoon, Sung-Ho;Kim, Myung-Sup
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.89-99
    • /
    • 2011
  • The payload signature-based traffic classification system has to deal with large amount of traffic data, as the number of internet-based applications and network traffic continue to grow. While a number of pattern-matching algorithms have been proposed to improve processing speedin the literature, the performance of pattern matching algorithms is restrictive and depends on the features of its input data. In this paper, we studied how to optimize the search space in order to improve the processing speed of the payload signature-based traffic classification system. Also, the feasibility of our design choices was proved via experimental evaluation on our campus traffic trace.

Mathematical Model of Variable-Length Payloads for EDCA and Multi-User MIMO Based Wireless LAN (향상된 분산 채널 접근 기법 및 다중사용자 MIMO 기반 무선랜 환경에서 가변 길이 페이로드에 대한 수학적 모델)

  • Chung, Chulho;Chung, Taewook;Kang, Byungcheol;Kim, Jaeseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1117-1119
    • /
    • 2015
  • In this letter, we propose a mathematical model of variable-length payloads transmitted in EDCA and transmitted using MU-MIMO. Assuming fixed-length or the use of mean value of payload length leads to discordant results while calculating the total payload length of variable-length frames transmitted within a fixed duration. Using the proposed model results in accurate results (less than 3% relative errors) for total payload length under variable-length traffic.

The Overview of CEU Development for a Payload

  • Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.797-799
    • /
    • 2006
  • The Electro-optical camera subsystem as a payload of a satellite system consists of OM (optical module) and CEU(camera electronics unit), and most performances of the camera subsystem depend a lot on the CEU in which TDI CCDs(Time Delayed Integration Charge Coupled Device) take the main role of imaging by converting the light intensity into measurable voltage signal. Therefore it is required to specify and design the CEU very carefully at the early stage of development with overall specifications, design considerations, calibration definition, test methods for key performance parameters. This paper describes the overview of CEU development. It lists key requirement characteristics of CEU hardware and design considerations. It also describes what kinds of calibration are required for the CEU and defines the test and evaluation conditions in verifying requirement specifications of the CEU, which are used during acceptance test, considering the fact that CEU performance results change a lot depending on test and evaluation conditions such as operational line rate, TDI level, and light intensity level, so on.

  • PDF