• Title/Summary/Keyword: Paving materials

Search Result 81, Processing Time 0.021 seconds

Characteristic of Elastic Paving Materials in Bicycle Road using Polyurethane (폴리우레탄을 이용한 자전거도로의 탄성포장재 특성)

  • Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • In this study, characteristic of elastic paving materials in bicycle road using polyurethane were studied experimentally. As a results, following their good result was obtained. Bicycle road packaging materials are flexural strength g test, ratio of mass change after freezing and thawing, repulsion elasticity test, water Permeation coefficient test and slip resistance test results showed good performance.

A Study on Paving Technique using Polymer Epoxy Resin Materials (고분자 에폭시 수지혼합물을 이용한 포장기술 연구)

  • Oh, Seung Hwoon;Kim, Nak Seok;Kim, Wan Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.209-216
    • /
    • 2009
  • This study was conducted to develop a thin paving technique using polymer epoxy resin materials which is considered as a durable pavement materials. The mechanical performance characteristics of the polymer epoxy resin materials were also evaluated to confirm the validity as a pavement materials. To estimate the performance properties of the materials, bending tests and bonding tests were performed using freeze-thaw and ultra-violet rays to accelerate the aging of materials. In addition, HYUNStay, a commercial structural analysis program for cable-stayed bridges, was used to compare the effect of paving materials between the polymer epoxy resin materials and the conventional ones on the reduction of cable tension and on the stability of the main tower. According to the test results, it is noted that the thin paving technique using polymer epoxy resin materials can improve the performance and durability of pavement compared to the conventional one.

An Experimental Study on the Basic Properties of Elastic Paving Materials (탄성포장재의 기초물성에 관한 실험적 연구)

  • Ko, Hune-Bum;Ko, Man-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5021-5028
    • /
    • 2015
  • Previous studies have considered the permeability and construction method of paving materials, thus focusing on more practical issues rather than basic research of their properties. The present study investigated the possibility of using an elastic paving material having lesser thickness in the resurfacing of existing concrete or asphalt paved areas while satisfying the necessary conditions of resilience and water permeability. An alternative to complete reconstruction would reduce the amount of resource wastage and environmental pollution, as well as the cost of projects. This study investigated five variants of thickness (10, 13, 15, 20, 25mm) and three mixing ratios of binder to rubber chips (20, 22.5, 25%) to ascertain the ideal basic properties of each. The obtained test data revealed that a minimum thickness(10~25mm) of the elastic paving materials can be determined from a qualitative point of view, and alternatives should be provided to improve the durability of the paving material on account of the temperature sensitivity.

Experimental Study on Characteristics of Granular Materials Containing Recycled Aggregates (순환골재를 포함한 입상재료의 특성에 관한 실험적 연구)

  • Hong, Seok-Woo;Gwon, Gi-Cheol;Han, Yeong-Seong
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.83-94
    • /
    • 2013
  • PURPOSES : In Korea, most designs of pavement had been mainly performed by considering CBR of granular materials before KPRP(Korea Pavement Research Program) and 86 AASHTO design method were introduced. Since then, the trend of the pavement designs gradually have moved to using mechanical characteristics throughout the resilient modulus based on the test results up to recently. In this study, we should like to research the mechanical characteristics of paving materials containing Recycled aggregates through the cyclic loading triaxial compression tests. METHODS : The kinds of materials were tested; coarse grained subbase materials, refining aggregates base materials and recycled aggregates. RESULTS : The present study aims to figure out the resilient modulus of paving materials containing Recycled aggregates through the cyclic loading triaxial compression tests. CONCLUSIONS : The test results revealed that the engineering properties of the recycled aggregates were more excellent than the those of others.

Charateristics of Soft Paving Materials used Eco-friendly (친환경 소프트 포장재의 공학적 특성에 관한 연구)

  • Jeon, Du-Jun;Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.206-213
    • /
    • 2019
  • Purpose: This study aims to develop eco - friendly paving materials using Sawdust and EPDM chips. Method: Materials are eco-friendly materials and have no environmental problems. By using EPDM chip, the walking feeling can be increased. Results: In this study, the optimum mixing ratio was calculated through mixing design test. Based on the blending ratio, the surface layer of the sidewalk is made of fine sawdust and EPDM chips. We used only sawdust of grain - 107 -size to make the base layer of the sidewalks and the surface layer of the bicycle road with the permeability and the anti - resilience, and suggested the application method through the test construction. Conclusion: This study the expected that the recent efforts of the government to reduce the elastic paving material, which is the environmentally harmful problem with the complete eco-friendly paving material, are expected to revive.

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF

Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste

  • Sgorlon, Juliana Guerra;Tavares, Celia Regina Granhen;Franco, Janaina de Melo
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.337-353
    • /
    • 2014
  • The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.

Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis (대변형 유한요소해석을 위한 요소망 자동 생성기법)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

Characteristics of Elastic Paving Material Made of Sawdust and Urethane Resin Mixture (톱밥과 우레탄 수지 혼합물로 제조한 탄성 포장재의 특성)

  • Choi, Jae-Jin;Lee, Kwan-Ho;Moon, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.673-680
    • /
    • 2017
  • Research and commercialization of wood chips-urethane resin mixtures as paving materials for park trails and tourist attractions are underway. The aim of this study was to expand the use of such paving materials to the playgrounds, where vigorous physical movements occur frequently. For this purpose, the physical properties and safety of the paving material, in which some or all of the wood chips(passing through a 10mm sieve and remaining in a 3mm sieve) were replaced with sawdust, were studied experimentally. Strength, elastic modulus, slip resistance, shock absorption and heavy metal content tests were carried out by varying the mixing ratio of urethane resin, sawdust and wood chip. As a result, in the case of wood chip-resin mixtures with mass ratios of the resin to total mass of sawdust and wood chips of 1.0 and 1.2 and having a ratio of sawdust mass to total mass of sawdust and wood chips of 0-0.4, it was found that the properties satisfied KS F 3888-2. On the other hand, in case of using sawdust only as a woody material, the shock absorbability was below standard, and the mass ratio of resin to sawdust required 1.2 or more to ensure the specified tensile strength.

Impacts of Different Urban Surfaces on Summer Thermal Performance

  • Jo, Hyun-Kil;Wu, Qian
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.819-826
    • /
    • 2015
  • This study measured temperatures and albedos of urban surfaces for different colors and materials during summer, and calculated the energy budget over different urban surfaces to find out the thermal performance affecting the heat built-up. The study selected six surface colors and 13 materials common in urban landscape. Their surface temperatures (Ts) and albedos were measured at a given time interval in the daytime from June to August. Average Ts over summer season for asphalt-colored brick was $4.0^{\circ}C$ higher than that for light red-colored one and $9.7^{\circ}C$ higher than that for white-colored one. The Ts for artificial surface materials of asphalt paving, brown brick wall, and green concrete wall was $6.0^{\circ}C$ higher than that for natural and semi-natural ones of grass, grassy block, and planted concrete wall. There was the greatest difference of $16.3^{\circ}C$ at midafternoon in the Ts between asphalt paving and planted concrete wall. Average albedo over summer season of surface materials ranged from 0.08 for asphalt paving to 0.67 for white concrete wall. This difference in the albedo was associated with a maximum of $15.7^{\circ}C$ difference at midafternoon in the Ts. Increasing the albedo by 0.1 (from 0.22 to 0.32) reduced the Ts by about $1.3^{\circ}C$. Average storage heat at midday by natural and semi-natural surfaces of grass and grassy block was about 10% lower than that by artificial ones of asphalt, light-red brick, and concrete. Reflected radiation, which ultimately contributes to heating the urban atmosphere, was 3.7 times greater for light-red brick and concrete surfaces than for asphalt surface. Thus, surfaces with in-between tone and color are more effective than dark- or white-colored ones, and natural or semi-natural surfaces are much greater than artificial ones in improving the urban thermal environment. This study provides new information on correlation between Ts and air temperature, relationship between albedo and Ts, and the energy budget.