• Title/Summary/Keyword: Patterning process

Search Result 443, Processing Time 0.025 seconds

A Patterning Process for Organic Thin Films Using Discharge and Suction Needles (토출 및 흡입 Needle을 이용한 유기 박막 패터닝 공정)

  • Kim, Daeyeob;Shin, Dongkyun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • Unlike a printing process, it is difficult to pattern organic thin films in the longitudinal (coating) direction using a coating process. In this paper, we have investigated the feasibility of patterning organic thin films using needles. To this end, we have slot-coated an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution in the form of a fine stripe or large area and then applied the dual needle; one for discharging the main solvent of the underlying thin film and the other for sucking the dissolved thin film. We have found that the pattern width and depth increase as the moving speed of the plate decreases. However, it is observed that the sidewall slope is very gentle (the length of the slope is of the order of 200 ㎛) due to the fact that the discharged main solvent is widely spread and then isotropic etching occurs. With this scheme, we have also demonstrated that a fine stripe can be obtained by scanning the dual needle closely. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the patterned PEDOT:PSS stripe and observed the insulation property in the strong light-emitting stripe.

Cu dry etching by the reaction of Cu oxide with H(hfac) (Cu oxide의 형성과 H(hfac) 반응을 이용한 Cu 박막의 건식식각)

  • Yang, Hui-Jeong;Hong, Seong-Jin;Jo, Beom-Seok;Lee, Won-Hui;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.527-532
    • /
    • 2001
  • Dry etching of copper film using $O_2$ plasma and H(hfac) has been investigated. A one-step process consisting of copper film oxidation with an $O_2$ plasma and the removal of surface copper oxide by the reaction with H(hfac) to form volatile Cu(hfac)$_2$ and $H_2O$ was carried but. The etching rate of Cu in the range from 50 to 700 /min was obtained depending on the substrate temperature, the H(hfac)/O$_2$ flow rate ratio, and the plasma power. The copper film etch rate increased with increasing RF power at the temperatures higher than 215$^{\circ}C$. The optimum H(hfac)/O$_2$ flow rate ratio was 1:1, suggesting that the oxidation process and the reaction with H(hfac) should be in balance. Cu patterning using a Ti mask was performed at a flow rate ratio of 1:1 on 25$0^{\circ}C$\ulcorner and an isotropic etching profile with a taper slope of 30$^{\circ}$was obtained. Cu dry patterning with a tapered angle which is necessary for the advanced high resolution large area thin film transistor liquid-crystal displays was thus successfully obtained from one step process by manipulating the substrate temperature, RF power, and flow rate ratio.

  • PDF

Laser patterning process for a-Si:H single junction module fabrication (레이저 가공에 의한 비정질 실리콘 박막 태양전지 모듈 제조)

  • Lee, Hae-Seok;Eo, Young-Joo;Lee, Heon-Min;Lee, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.281-284
    • /
    • 2007
  • Recently, we have developed p-i-n a-Si:H single junction thin film solar cells with RF (13.56MHz) plasma enhanced chemical vapor deposition (PECVD) system, and also successfully fabricated the mini modules ($>300cm^2$), using the laser patterning technique to form an integrated series connection. The efficiency of a mini module was 7.4% ($Area=305cm^2$, Isc=0.25A, Voc=14.74V, FF=62%). To fabricate large area modules, it is important to optimise the integrated series connection, without damaging the cell. We have newly installed the laser patterning equipment that consists of two different lasers, $SHG-YVO_4$ (${\lambda}=0.532{\mu}m$) and YAG (${\lambda}=1.064{\mu}m$). The mini-modules are formed through several scribed lines such as pattern-l (front TCO), pattern-2 (PV layers) and pattern-3 (BR/back contact). However, in the case of pattern-3, a high-energy part of laser shot damaged the textured surface of the front TCO, so that the resistance between the each cells decreases due to an incomplete isolation. In this study, the re-deposition of SnOx from the front TCO, Zn (BR layer) and Al (back contact) on the sidewalls of pattern-3 scribed lines was observed. Moreover, re-crystallization of a-Si:H layers due to thermal damage by laser patterning was evaluated. These cause an increase of a leakage current, result in a low efficiency of module. To optimize a-Si:H single junction thin film modules, a laser beam profile was changed, and its effect on isolation of scribed lines is discussed in this paper.

  • PDF

Carbon-Nanotubes Grown from Spin-Coated Nanoparticles for Field-Emission Displays

  • Kim, Do-Yoon;Yoo, Ji-Beom;Han, In-Taek;Kim, Ha-Jin;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2005
  • The density controlled carbon nanotubes (CNTs) are grown on the iron acetate nanoparticles by using the freeze-dry method. The iron-acetate [Fe(II)$(CH_3COO)_2$] solution is used to prepare the catalytic iron nanoparticles. The density of CNTs is controlled in order to enhance the field emission process. Furthermore, the patterning of the iron nanoparticle catalyst-layer for the fabrication of electronic devices is simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to form the electron emitter with under-gate type triode structure.

Soft-Lithographic Fabrication of Ni Nanodots Using Self-Assembled Surface Micelles

  • Seo, Young-Soo;Lee, Jung-Soo;Lee, Kyung-Il;Kim, Tae-Wan
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.53-56
    • /
    • 2008
  • This study proposes a simple nano-patterning process for the fabrication of magnetic nanodot arrays on a large area substrate. Ni nanodots were fabricated on a large area (4 inches in diameter) Si substrate using the soft lithographic technique using self-assembled surface micelles of Polystyrene-block-Poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer formed at the air/water interface as a mask. The hexagonal array of micelles was successfully transferred to a Ni thin film on a Si substrate using the Langmuir-Blodgett technique. After ion-mill dry etching, a magnetic Ni nanodot array with a regular hexagon array structure was obtained. The Ni nanodot array showed in-plane easy axis magnetization and typical soft magnetic properties.

The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure

  • Kim, Do-Yoon;Yoo, Ji-Beom;Berdinski, A.S.;Han, In-Taek;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1016-1019
    • /
    • 2005
  • We studied the density control of carbon nanotubes (CNTs) which were grown on the iron nanoparticles prepared from iron-acetate [$Fe(II)(CH_3COO)_2$] solution using freeze-dry method. The density of CNTs was controlled for the enhancement of field emission. The patterning process of iron-acetate catalyst-layer for the fabrication of electronic device was simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to formation of the electron emitter with under gate type triode structure.

  • PDF

The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure

  • Kim, Do-Yoon;Yoo, Ji-Beom;Berdinski, A.S.;Han, In-Taek;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1455-1458
    • /
    • 2005
  • We studied the density control of carbon nanotubes (CNTs) which were grown on the iron nanoparticles prepared from iron-acetate $[Fe(II)(CH_3COO)_2]$ solution using freeze-dry method. The density of CNTs was controlled for the enhancement of field emission. The patterning process of iron-acetate catalyst-layer for the fabrication of electronic device was simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to formation of the electron emitter with under-gate type triode structure.

  • PDF

NUMERICAL STUDY ON THE MICRO-LINE PATTERNING PROCESS USING AN INKJET PRINGTING METHOD (잉크젯 방법을 통한 마이크로 라인 형성에 관한 수치적 연구)

  • Lee, W.R.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.548-550
    • /
    • 2010
  • The droplet motion on a flat substrate with contact angle hysteresis is studied by solving the equations governing the conservation of mass and momentum. The liquid- gas interface is determined by an level-set method which is based on a sharp-interface representation for accurately imposing the matching or coupling conditions at the interface. The method is modified to treat the dynamic contact angle at the liquid-gas-solid interface. The computations are performed to investigate a droplet impact and merging pattern on a flat substrate to find a optimal condition in a micro-line patterning process. The effects of dynamic contact angles on droplet motion are quantified.

  • PDF

Conductivity Pattern Manufacture Technology of Solid Surface Compound Polymer Material (입체면 복합 폴리머 소재의 전도성 패턴 제작 기술)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.224-234
    • /
    • 2016
  • This study developed the conductivity pattern of solid surface using laser direct pattern and compound polymer material technology. For development direct patterning system of solid surface, we used the laser power stabilizer, the dynamic focusing, 3D scanner S/W and the auto aligning techniques. Also For conductivity pattern, we are developed compound polymer material with additive by electro-less plating. These technologies are already used commercially. However operation and control integrated system for direct patterning of solid surface are not yet developed. The objective of this paper is to introduce the laser direct structuring for simple process improvement instead complex PCB process, and develop the operating stability and integration system. Also we implemented new application of laser direct structuring through sample manufacture.

Laser Processing Technology in Semiconductor and Display Industry (반도체 및 디스플레이 산업에서의 레이저 가공 기술)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • Laser material processing technology is adopted in several industry as alternative process which could overcome weakness and problems of present adopted process, especially semiconductor and display industry. In semiconductor industry, laser photo lithography is doing at front-end level, and cutting, drilling, and marking technology for both wafer and EMC mold package is adopted. Laser cleaning and de-flashing are new rising technology. There are 3 kinds of main display industry which use laser technology - TFT LCD, AMOLED, Touch screen. Laser glass cutting, laser marking, laser direct patterning, laser annealing, laser repairing, laser frit sealing are major application in display industry.