• Title/Summary/Keyword: Pattern spacing

Search Result 192, Processing Time 0.021 seconds

Analysis of W-type Reflector Antennas Using the Method of Moments (모멘트법을 이용한 W형 리플렉터 안테나의 해석)

  • 이상수;최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.340-350
    • /
    • 1999
  • In this paper, W-type reflector antennas modified from corner reflector antenna structure were proposed and the radiation characteristics were analyzed using the method of moments. The analysis results such as gain, F/B, half power beamwidth, and radiation pattern are presented as functions of dipole height h and back edge spacing d. Also, the proposed antenna was compared with corner reflector antennas in the same size of side reflectors, W-type reflector antenna was found to exhibit somewhat higher gain and larger F/B than corner reflector antennas. To verify the analysis results, W-type reflector antenna was fabricated and the radiation characteristics were measured. The measured results show good agreement with the calculated results.

  • PDF

Analysis of short-term feding characteristics in urban microcellular environment (도심지 마이크로 셀 환경에서의 단구간 페이딩 특성 분석)

  • 송기홍;김종호;함영권;김제영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1652-1658
    • /
    • 1997
  • We analyze the short-term fading characteristics of received signal in urban microcellular environment. In order to analyze the fading signal, we obtain the fading distributions by distance, the received power pattern by arrival angle and the spatial correlation coefficients of fading signal by spacing distance between two antennas. In addition, we compare the distributions of simulated fading signal with the Rician parameter K in various conditions. As the results, it can be seen that the occuring period of deep fade and fade range in microcell are different as the distance between two antennas;besides, the period of fade and fade range in OBS region occur shortly and deeply as compared with those in LOS region. The data used in analysis are obtained by the simulation program using ray tracing technique.

  • PDF

척추동물의 Isozyme에 관한 비교연구: IV. 한국산 개구리목의 Lactate 및 Malate Dehydrogenase Isozyme

  • 고정식;조동현;박상윤
    • The Korean Journal of Zoology
    • /
    • v.16 no.3
    • /
    • pp.193-201
    • /
    • 1973
  • A cellulose acetate electrophoretic survey of Korean Anura has revealed the presence of diverse lactate and malate dehydrogenase isozymes. The LDH and MDH isozymes in the tissues of the brain, heart, stomach, skeletal muscle and liver of the six species of Anura examined show the species specific patterns which differ from those of mammals and birds. Two isozymic forms of LDH and MDH exist in both Rana nigromaculata and Rana nigromaculata coreana, respectively, with almost the same pattern. LDH of Bombina orientalis has five isozymic forms, and that of Rana temporaria ornativentris contains four isozymes. Bufo sp. has 3 to 5, and Rana rugosa has 3 to 4 isozymic bands according to the tissues. MDH's of all animals have two isozymic forms with different spacing on the zymograms.

  • PDF

Ultimate strength behavior of steel plate-concrete composite slabs: An experimental and theoretical study

  • Wu, Lili;Wang, Hui;Lin, Zhibin
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.741-759
    • /
    • 2020
  • Steel plate-concrete composite slabs provide attractive features, such as more effective loading transfer, and more cost-effective stay-in-place forms, thereby enabling engineers to design more high-performance light structures. Although significant studies in the literatures have been directed toward designing and implementing the steel plate-concrete composite beams, there are limited data available for understanding of the composite slabs. To fill this gap, nine the composite slabs with different variables in this study were tested to unveil the impacts of the critical factors on the ultimate strength behavior. The key information of the findings included sample failure modes, crack pattern, and ultimate strength behavior of the composite slabs under either four-point or three-point loading. Test results showed that the failure modes varied from delamination to shear failures under different design factors. Particularly, the shear stud spacing and thicknesses of the concrete slabs significantly affected their ultimate load-carrying capacities. Moreover, an analytical model of the composite slabs was derived for determining their ultimate load-carrying capacity and was well verified by the experimental data. Further extensive parametric study using the proposed analytical methods was conducted for a more comprehensive investigation of those critical factors in their performance. These findings are expected to help engineers to better understand the structural behavior of the steel plate-concrete composite slabs and to ensure reliability of design and performance throughout their service life.

Manufacturing process of micro-nano structure for super hydrophobic surface (초발수 표면을 만들기 위한 마이크로-나노 몰드 제작 공정)

  • Lim, Dong-Wook;Park, Kyu-Bag;Park, Jung-Rae;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2021
  • In recent materials industry, researches on the technology to manufacture super hydrophobic surface by effectively controlling the wettability of solid surface are expanding. Research on the fabrication of super hydrophobic surface has been studied not only for basic research but also for self-cleaning, anti-icing, anti-friction, flow resistance reduction in construction, textile, communication, military and aviation fields. A super hydrophobic surface is defined as a surface having a water droplet contact angle of 150 ° or more. The contact angle is determined by the surface energy and is influenced not only by the chemical properties of the surface but also by the rough structure. In this paper, maskless lithography using DMD, electro etching, anodizing and hot embossing are used to make the polymer resin PMMA surface super hydrophobic. In the fabrication of microstructure, DMDs are limited by the spacing of microstructure due to the structural limitations of the mirrors. In order to overcome this, maskless lithography using a transfer mechanism was used in this paper. In this paper, a super hydrophobic surface with micro and nano composite structure was fabricated. And the wettability characteristics of the micro pattern surface were analyzed.

Influence of basalt fibres on the flexural performance of hypo sludge reinforced concrete beams with SBR latex

  • S. Srividhya;R. Vidjeapriya
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.615-624
    • /
    • 2023
  • The focus of this study is on the structural behaviour of reinforced concrete beams in which basalt fiber and SBR latex were added and the cement was partially replaced with 10% of hypo sludge. Eight different mixes of reinforced beam specimens were tested under static loading behaviour. The experiments showed, the structural behaviour with features such as load-deflection relationships, crack pattern, crack propagation, number of crack, crack spacing and moment curvature. A stress-strain relationship to represent the overall behavior of reinforced concrete in tension, which includes the combined effects of cracking and mode of failure along the reinforcement, is proposed. The structural behaviour results of reinforced concrete beams with various types of mix were tested at the age of 28 days. The investigation revealed that the flexural behaviors of hypo sludge reinforced concrete beams with addition of basalt fiber and SBR latex was higher than that of control concrete reinforced beam. The specimen (LHSBFC) with 10% hypo sludge, 0.25% Basalt fiber and 10% SBR latex showed an increase of 5.08% load carrying capacity, 7.6% stiffness, 3.97% ductility, 31.29% energy dissipation when compared to the control concrete beam. The analytical investigation using FEM shows that it was in good agreement with the experimental investigation.

Growth and characterization of $Al_{2}O_{3}-based\;Y_{3}Al_5O_{12},\;ZrO_{2}$ binary and ternary eutectic fibers

  • Lee, J.H.;Yoshikawa, A.;Kaiden, H.;Fukuda, T.;Yoon, D.H.;Waku, Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.170-175
    • /
    • 2001
  • It was possible to grow the $Al_{2}O_{3}$ based $Y_{3}A_{5}O_{12}(YAG),ZrO_{2}$ binary and ternary eutectic fibers using micro-pulling down method with a growing rate of 0.1~15 mm/min. While $Al_{2}O_{3}/ZrO_{2}$ showed cellular-lamellar structure, $Al_{2}O_{3}$/YAG and $Al_{2}O_{3}$/YAG/$ZrO_{2}$ternary eutectic fibers showed homogeneous Chinese script lamellar structures. The microstructures of $Al_{2}O_{3}/ZrO_{2}$ binary eutectic fibers changed with solidification rate from lamellar pattern to cellular structure. The interlamellar spacing agreed with the inverse-square-root dependance on pulling rate according to $\lambda$=$kv_p\;{-1/2}$. $Al_{2}O_{3}/ZrO_{2}$ binary eutectic fibers recorded the highest tensile strength of about 1560MPa at room temperature. $Al_2O_3/YAG/ZrO_2$ternary eutectic fiber showed excellent thermal stability to $1200^{\circ}C$ without significant decrease. The maximum strength of ternary eutectic fibers recorded were 1100MPa at $25^{\circ}C$ and 970MPa at $1200^{\circ}C$, respectively.

  • PDF

A Study on Optimization of Structure for Hexagon Tile Sub-array Antenna System (Hexagon 타일 부배열 안테나 시스템 구조 최적화에 관한 연구)

  • Jung, Jinwoo;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.129-132
    • /
    • 2022
  • In this paper, a technique for optimizing the sub-array system structure that can minimize the side lobe level of the phased-array antenna is proposed. Optimization of the proposed array antenna structure is to adjust the spacing between sub-arrays and sub-arrays by using a hexagonal array structure of one sub-array and a hexagonal sub-array for six hexagonal arrays, and thus the entire phased array antenna system of the radiation pattern was optimized. Compared to the 2-dimensional planar antenna system, the proposed technique maintains a gain of 24.3 dBi and a half-power beam-width of 8.46 degrees without change, and only reduces -3.4 dB and -6.5 dB in the x-axis and y-axis directions, respectively.

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.