• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.032 seconds

A Study on the Improvement of the Defense-related International Patent Classification using Patent Mining (특허 마이닝을 이용한 국방관련 국제특허분류 개선 방안 연구)

  • Kim, Kyung-Soo;Cho, Nam-Wook
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.21-33
    • /
    • 2022
  • Purpose: As most defense technologies are classified as confidential, the corresponding International Patent Classifications (IPCs) require special attention. Consequently, the list of defense-related IPCs has been managed by the government. This paper aims to evaluate the defense-related IPCs and propose a methodology to revalidate and improve the IPC classification scheme. Methods: The patents in military technology and their corresponding IPCs during 2009~2020 were utilized in this paper. Prior to the analysis, patents are divided into private and public sectors. Social network analysis was used to analyze the convergence structure and central defense technology, and association rule mining analysis was used to analyze the convergence pattern. Results: While the public sector was highly cohesive, the private sector was characterized by easy convergence between technologies. In addition, narrow convergence was observed in the public sector, and wide convergence was observed in the private sector. As a result of analyzing the core technologies of defense technology, defense-related IPC candidates were identified. Conclusion: This paper presents a comprehensive perspective on the structure of convergence of defense technology and the pattern of convergence. It is also significant because it proposed a method for revising defense-related IPCs. The results of this study are expected to be used as guidelines for preparing amendments to the government's defense-related IPC.

Mining Frequent Sequential Patterns over Sequence Data Streams with a Gap-Constraint (순차 데이터 스트림에서 발생 간격 제한 조건을 활용한 빈발 순차 패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.35-46
    • /
    • 2010
  • Sequential pattern mining is one of the essential data mining tasks, and it is widely used to analyze data generated in various application fields such as web-based applications, E-commerce, bioinformatics, and USN environments. Recently data generated in the application fields has been taking the form of continuous data streams rather than finite stored data sets. Considering the changes in the form of data, many researches have been actively performed to efficiently find sequential patterns over data streams. However, conventional researches focus on reducing processing time and memory usage in mining sequential patterns over a target data stream, so that a research on mining more interesting and useful sequential patterns that efficiently reflect the characteristics of the data stream has been attracting no attention. This paper proposes a mining method of sequential patterns over data streams with a gap constraint, which can help to find more interesting sequential patterns over the data streams. First, meanings of the gap for a sequential pattern and gap-constrained sequential patterns are defined, and subsequently a mining method for finding gap-constrained sequential patterns over a data stream is proposed.

Toward understanding learning patterns in an open online learning platform using process mining (프로세스 마이닝을 활용한 온라인 교육 오픈 플랫폼 내 학습 패턴 분석 방법 개발)

  • Taeyoung Kim;Hyomin Kim;Minsu Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.285-301
    • /
    • 2023
  • Due to the increasing demand and importance of non-face-to-face education, open online learning platforms are getting interests both domestically and internationally. These platforms exhibit different characteristics from online courses by universities and other educational institutions. In particular, students engaged in these platforms can receive more learner autonomy, and the development of tools to assist learning is required. From the past, researchers have attempted to utilize process mining to understand realistic study behaviors and derive learning patterns. However, it has a deficiency to employ it to the open online learning platforms. Moreover, existing research has primarily focused on the process model perspective, including process model discovery, but lacks a method for the process pattern and instance perspectives. In this study, we propose a method to identify learning patterns within an open online learning platform using process mining techniques. To achieve this, we suggest three different viewpoints, e.g., model-level, variant-level, and instance-level, to comprehend the learning patterns, and various techniques are employed, such as process discovery, conformance checking, autoencoder-based clustering, and predictive approaches. To validate this method, we collected a learning log of machine learning-related courses on a domestic open education platform. The results unveiled a spaghetti-like process model that can be differentiated into a standard learning pattern and three abnormal patterns. Furthermore, as a result of deriving a pattern classification model, our model achieved a high accuracy of 0.86 when predicting the pattern of instances based on the initial 30% of the entire flow. This study contributes to systematically analyze learners' patterns using process mining.

Industrial Waste Database Analysis Using Data Mining Techniques

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.455-465
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, and relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these outputs for environmental preservation and environmental improvement.

  • PDF

A Knowledge Discovery Framework for Spatiotemporal Data Mining

  • Lee, Jun-Wook;Lee, Yong-Joon
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.124-129
    • /
    • 2006
  • With the explosive increase in the generation and utilization of spatiotemporal data sets, many research efforts have been focused on the efficient handling of the large volume of spatiotemporal sets. With the remarkable growth of ubiquitous computing technology, mining from the huge volume of spatiotemporal data sets is regarded as a core technology which can provide real world applications with intelligence. In this paper, we propose a 3-tier knowledge discovery framework for spatiotemporal data mining. This framework provides a foundation model not only to define the problem of spatiotemporal knowledge discovery but also to represent new knowledge and its relationships. Using the proposed knowledge discovery framework, we can easily formalize spatiotemporal data mining problems. The representation model is very useful in modeling the basic elements and the relationships between the objects in spatiotemporal data sets, information and knowledge.

Industrial Waste Database Analysis Using Data Mining

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.241-251
    • /
    • 2006
  • Data mining is the method to find useful information for large amounts of data in database It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. We analyze industrial waste database using data mining technique. We use k-means algorithm for clustering and C5.0 algorithm for decision tree and Apriori algorithm for association rule. We can use these analysis outputs for environmental preservation and environmental improvement.

  • PDF

A Study on the Implementation of an optimized Algorithm for association rule mining system using Fuzzy Utility (Fuzzy Utility를 활용한 연관규칙 마이닝 시스템을 위한 알고리즘의 구현에 관한 연구)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • In frequent pattern mining, the uncertainty of each item is accompanied by a loss of information. AAlso, in real environment, the importance of patterns changes with time, so fuzzy logic must be applied to meet these requirements and the dynamic characteristics of the importance of patterns should be considered. In this paper, we propose a fuzzy utility mining technique for extracting frequent web page sets from web log databases through fuzzy utility-based web page set mining. Here, the downward closure characteristic of the fuzzy set is applied to remove a large space by the minimum fuzzy utility threshold (MFUT)and the user-defined percentile(UDP). Extensive performance analyses show that our algorithm is very efficient and scalable for Fuzzy Utility Mining using dynamic weights.

A Method for Frequent Itemsets Mining from Data Stream (데이터 스트림 환경에서 효율적인 빈발 항목 집합 탐사 기법)

  • Seo, Bok-Il;Kim, Jae-In;Hwang, Bu-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.139-146
    • /
    • 2012
  • Data Mining is widely used to discover knowledge in many fields. Although there are many methods to discover association rule, most of them are based on frequency-based approaches. Therefore it is not appropriate for stream environment. Because the stream environment has a property that event data are generated continuously. it is expensive to store all data. In this paper, we propose a new method to discover association rules based on stream environment. Our new method is using a variable window for extracting data items. Variable windows have variable size according to the gap of same target event. Our method extracts data using COBJ(Count object) calculation method. FPMDSTN(Frequent pattern Mining over Data Stream using Terminal Node) discovers association rules from the extracted data items. Through experiment, our method is more efficient to apply stream environment than conventional methods.

Extracting Maximal Similar Paths between Two XML Documents using Sequential Pattern Mining (순차 패턴 마이닝을 사용한 두 XML 문서간 최대 유사 경로 추출)

  • 이정원;박승수
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.553-566
    • /
    • 2004
  • Some of the current main research areas involving techniques related to XML consist of storing XML documents, optimizing the query, and indexing. As such we may focus on the set of documents that are composed of various structures, but that are not shared with common structure such as the same DTD or XML Schema. In the case, it is essential to analyze structural similarities and differences among many documents. For example, when the documents from the Web or EDMS (Electronic Document Management System) are required to be merged or classified, it is very important to find the common structure for the process of handling documents. In this paper, we transformed sequential pattern mining algorithms(1) to extract maximal similar paths between two XML documents. Experiments with XML documents show that our transformed sequential pattern mining algorithms can exactly find common structures and maximal similar paths between them. For analyzing experimental results, similarity metrics based on maximal similar paths can exactly classify the types of XML documents.

Automatic Recommendation on (IP)TV Program schedules in a personalized way using sequential pattern mining (순차 패턴 마이닝 기법을 이용한 개인 맞춤형 (IP)TV 프로그램 스케줄 자동 추천 -프로그램 시청 시간의 정량적 정보를 고려한 패턴 추출 및 개인 선호도 정보 추출을 통한 스케줄 추천 시스템-)

  • Pyo, Shin-Jee;Kim, Eun-Hui;Kim, Mun-Churl
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.105-110
    • /
    • 2009
  • Conventional TV viewing environment had provided limited numbers of channels and contents so that accessibility of contents was made user's manual change of TV channels and by manual selection of TV program contents. However, with advent of IPTV and various contents and channels available to users’ terminals, excessive numbers of TV contents become available to users’ terminals, thus leading to totally different TV viewing environments. In this TV environment, users are required to make much effort to choose their preferred TV channels or program contents, which becomes much cumbersome to the users. Therefore, in this paper, we will propose TV contents schedule recommendation by making reasoning on users’ TV viewing patterns from TV viewing history data using sequential pattern mining so that so that it increases accessibility of users to many TV program contents which may be or may not be aware of the users.

  • PDF