Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.
Journal of the Korea institute for structural maintenance and inspection
/
v.15
no.3
/
pp.134-141
/
2011
There have been increased economic and societal demands to continuously monitor the integrity and long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. However, it is very difficult to continuously monitor the structural condition of the pipeline structures because those are placed underground and connected each other complexly, although pipeline structures are core underground infrastructures which transport primary sources. Moreover, damage can occur at several scales from micro-cracking to buckling or loose bolts in the pipeline structures. In this study, guided wave measurement can be achieved with a self-sensing circuit using a piezoelectric active sensor. In this self sensing system, a specific frequency-induced structural wavelet response is obtained from the self-sensed guided wave measurement. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented using the damage indices extracted from the guided wave features. Different types of structural damage artificially inflicted on a pipeline system were investigated to verify the effectiveness of the proposed SHM approach.
Finite element (FE) model updating is a useful tool for global damage detection technique, which identifies the damage of the structure using measured vibration data. This paper presents the application of a finite element model updating method to detect the damage of a small-scale reinforced concrete building structure using measured acceleration data from shaking table tests. An iterative FE model updating strategy using the least-squares solution based on sensitivity of frequency response functions and natural frequencies was provided. In addition, a side constraint to mitigate numerical difficulties associated with ill-conditioning was described. The test structure was subjected to six El Centro 1942 ground motion histories with different Peak Ground Accelerations (PGA) ranging from 0.06 g to 0.5 g, and analytical models corresponding to each stage of the shaking were obtained using the model updating method. Flexural stiffness values of the structural members were chosen as the updating parameters. In model updating at each stage of shaking, the initial values of the parameter were set to those obtained from the previous stage. Severity of damage at each stage of shaking was determined from the change of the updated stiffness values. Results indicated that larger reductions in stiffness values occurred at the slab members than at the wall members, and this was consistent with the observed damage pattern of the test structure.
Due to low annual average temperature, road tunnel lining in domestic cold region (Gangwon province) experiences durability problems. The financial and human damage due to cracks, breakout, exfoliation and water leakage increases every year. However, domestic research on effect of temperature on road tunnel lining damage is insufficient. Thus, this research has investigated 70 tunnels located in cold region (Gangwon-do) to analyze damage status. Furthermore, by contrasting damage on tunnels in relatively warm Gangneung area with those in relatively cold Hongcheon area, the effect of temperature on road tunnel lining damage was analyzed.
Journal of the Korean Society of Clothing and Textiles
/
v.25
no.1
/
pp.124-131
/
2001
To find out the effect of burn out print finishing for better quality of fabric, examined processing which could make less damages on the fiber because the biggest problem is remained fibers damage after burn out print finishing. Fiber damage examined to the condition of finishing material NaHSO$_4$and H$_2$SO$_4$, 3~10min., 100~13$0^{\circ}C$, glycerin. The fiber damages evaluated the break strength and the surface condition by SEM. Among satin, pile fabric which remained fiber is silk, warp knitted fabric which remained fiber is polyester, the fibers damage level were warp knitted fabric$0^{\circ}C$, glycerin and for 6 minutes by NaHSO$_4$. When carbonized by 20%. 50% and 70% to express textile design, carbonizing rate was not effect on the fiber damage very much. There was almost no damages with glycerine, and almost no damages during 3~6minutes fixation time, 10$0^{\circ}C$ steaming heat fixation by NaHSO$_4$and H$_2$SO$_4$. Without glycerine, there were damage by hydrolysis on polyesters surface and the fiver was broken by fixation time.
A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.
One of the most important requirements in the evaluation of existing structural systems and ensuring a safe performance during their service life is damage assessment. Damage can be defined as a weakening of the structure that adversely affects its current or future performance which may cause undesirable displacements, stresses or vibrations to the structure. The mass and stiffness of a structure will change due to the damage, which in turn changes the measured dynamic response of the system. Damage detection can increase safety, reduce maintenance costs and increase serviceability of the structures. Artificial Neural Networks (ANNs) are simplified models of the human brain and evolved as one of the most useful mathematical concepts used in almost all branches of science and engineering. ANNs have been applied increasingly due to its powerful computational and excellent pattern recognition ability for detecting damage in structural engineering. This paper presents and reviews the technical literature for past two decades on structural damage detection using ANNs with modal parameters such as natural frequencies and mode shapes as inputs.
The CFRP-confined circular concrete-filled steel tubular column is composed of concrete, steel, and CFRP. Its failure mechanics are complex. The most important difficulties are lack of an available method to establish a relationship between a specific damage mechanism and its acoustic emission (AE) characteristic parameter. In this study, AE technique was used to monitor the evolution of damage in CFRP-confined circular concrete-filled steel tubular columns. A fuzzy c-means method was developed to determine the relationship between the AE signal and failure mechanisms. Cluster analysis results indicate that the main AE sources include five types: matrix cracking, debonding, fiber fracture, steel buckling, and concrete crushing. This technology can not only totally separate five types of damage sources, but also make it easier to judge the damage evolution process. Furthermore, typical damage waveforms were analyzed through wavelet analysis based on the cluster results, and the damage modes were determined according to the frequency distribution of AE signals.
In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.
Journal of the Korean Society of Environmental Restoration Technology
/
v.13
no.4
/
pp.65-74
/
2010
This study is for Hanbuk Mountain Range within Gyeonggi province which is to propose the conservation plan by each damage pattern through site survey of the mountain range. The damage patterns are classified by siding, pointing and lining. The total damaged area is 103 areas: The siding pattern is damaged by developing farmland, mineral and quarry mining, dam, large scale development complex and cemetery park; The pointing pattern is including the development of road, transmission tower and way and mountaineering trail; The construction of electricity and communication facility, military facility, mobile communication station, heliport and shelter. The damages by developing road and large scale development complex are the most cause, and military facility, dam and reservoir, and residential area are the main causes, respectively. One of the compromised situation Hanbuk-Mountain Range usage as per section 7 section (18.45%), 12 section (18.45%) is the largest number of compromised has been surveyed, undermine the situation if you look at the usage by the road 25 locations (24.22%), military facilities and dam and reservoir to undermine this 11 established respectively (10.68%) were the most undermine. Therefore, this research propose the conservation plan as follow: first, need to understand, educate and publicize on Hanbuk-Mounatin Range; second, manage through the regulations and ordinance of Gyeonggi province; third build and expand the law for protecting Baekdu-Great Mountain Range.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.