• Title/Summary/Keyword: Pattern Machining

Search Result 204, Processing Time 0.022 seconds

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

The Influence of Heat Treatment and Ca contents on the Electrochemical Characteristics of Mg-Ca Alloys (Mg-Ca 합금의 전기화학적 특성에 미치는 Ca 첨가량 및 열처리의 영향)

  • Lee, S.H.;Chung, Dong-Seok;Park, B.O.;Kim, Y.G.;Jeong, Ha-Guk;Kim, Hye-Sung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.173-179
    • /
    • 2004
  • In this study, the influence of heat treatment and Ca contents on the electrochemical behavior was investigated. Mg-Ca alloys, i.e., Mg-0.22wt%Ca, Mg-0.56wt%Ca, Mg-1.31wt%Ca are prepared by ingot metallurgy. As-cast Mg-Ca alloys exhibited better electrochemical properties than pure Mg. Especially, Mg-0.22wt%Ca alloy improves its anode efficiency up to 62% and lowers the OCP up to -1.72VSCE. Microstructure and XRD patterns of Mg-Ca alloys show that additive Ca element is mainly solid-solutioned. While, the others show the microstructure and XRD pattern with large $Mg_2Ca$ at grain boundary. To assess the effect of heat treatment on the as-cast Mg-alloy, the specimens were heat treated at $200^{\circ}C$ for 2 hours under $CO_2$ gas atmosphere. Although corrosion properties of Mg-Ca alloys are somewhat deteriorated by heat treatment at $200^{\circ}C$ Mg-0.22wt%Ca alloy with uniformly distributed nano-sized $Mg_2Ca$ phase in ${\alpha}$-Mg matrix show still better corrosion properties than pure Mg specimen.

Linear Fresnel Lens Optimization for Middle Concentrated Photovoltaic (중집광형 태양광 집광장치 용 선형 프레넬 렌즈의 최적화설계연구)

  • Song, Je Heon;Yu, Jin Hee;Lee, Jun Ho;Jang, Won Keun;Lee, Dong Gil
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.213-216
    • /
    • 2013
  • This paper presents a combination of linear Fresnel lenses optimized for ${\times}25$ solar concentration. The combined lens consists of $5{\times}5$ linear Fresnel lenses. Each Fresnel lens is of $10{\times}10$ mm and optimized to tilt the incoming light onto a solar cell of the same size. All of the optimized Fresnel segments have the same pattern height of 35 ${\mu}m$, draft angle of $4^{\circ}$, and edge groove round of 1 ${\mu}m$ but with different facet angles varying from $14.1^{\circ}$ to $31.2^{\circ}$. The solar concentrating efficiency of the combination is shown to be over 80% and more robust than a conventional single ${\times}25$ circular Fresnel lens in terms of pointing misalignment and manufacturing errors. A sensitivity analysis finds that the edge groove round should be kept as small as machining allows since the concentrating efficiency drops ~5% per 1 ${\mu}m$ increase of the edge groove.

Automated Inspection System for Micro-pattern Defection Using Artificial Intelligence (인공지능(AI)을 활용한 미세패턴 불량도 자동화 검사 시스템)

  • Lee, Kwan-Soo;Kim, Jae-U;Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.729-735
    • /
    • 2021
  • Recently Artificial Intelligence(AI) has been developed and used in various fields. Especially AI recognition technology can perceive and distinguish images so it should plays a significant role in quality inspection process. For stability of autonomous driving technology, semiconductors inside automobiles must be protected from external electromagnetic wave(EM wave). As a shield film, a thin polymeric material with hole shaped micro-patterns created by a laser processing could be used for the protection. The shielding efficiency of the film can be increased by the hole structure with appropriate pitch and size. However, since the sensitivity of micro-machining for some parameters, the shape of every single hole can not be same, even it is possible to make defective patterns during process. And it is absolutely time consuming way to inspect all patterns by just using optical microscope. In this paper, we introduce a AI inspection system which is based on web site AI tool. And we evaluate the usefulness of AI model by calculate Area Under ROC curve(Receiver Operating Characteristics). The AI system can classify the micro-patterns into normal or abnormal ones displaying the text of the result on real-time images and save them as image files respectively. Furthermore, pressing the running button, the Hardware of robot arm with two Arduino motors move the film on the optical microscopy stage in order for raster scanning. So this AI system can inspect the entire micro-patterns of a film automatically. If our system could collect much more identified data, it is believed that this system should be a more precise and accurate process for the efficiency of the AI inspection. Also this one could be applied to image-based inspection process of other products.