• Title/Summary/Keyword: Pattern Emboss Forming

Search Result 2, Processing Time 0.018 seconds

Experimental Study of Pattern Emboss Forming using an Electromagnetic Force (전자기력을 이용한 압인 패턴 성형의 실험적 연구)

  • An, W.J.;Noh, H.G.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.363-368
    • /
    • 2014
  • Electromagnetic forming(EMF) is one of the high-speed forming methods, and has been used to deform metal sheets. The advantages of electromagnetic forming are reduced wrinkling due to non-contact characteristic and fine formability because of the high speed impact. In the current study, we suggest the application of electromagnetic forming to emboss pattern shapes using electromagnetic forces with only one forming coil and one punch. The high impact of the sheet at speeds of 100~300m/s produces significant coining pressure. In the current paper, electromagnetic forming was applied to Al 1100-O sheets; with thickness of 1.27mm and an area of $40mm{\times}40mm$. Using a single spiral coil, totally different types of patterns were created. Four different patterns were successfully produced on the aluminum sheet. The length and depth of the patterns were measured by three-dimensional scanning. Comparisons to the die shape showed good agreement. The test results confirm that emboss pattern forming by EMF using a single die can be used to replace the costly conventional method.

A study on Linear Pattern Fabrication of Plate-type PC (PC소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, E.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF