• 제목/요약/키워드: Pattern Accuracy

검색결과 1,351건 처리시간 0.028초

Assessment of Additional MRI-Detected Breast Lesions Using the Quantitative Analysis of Contrast-Enhanced Ultrasound Scans and Its Comparability with Dynamic Contrast-Enhanced MRI Findings of the Breast (유방자기공명영상에서 추가적으로 발견된 유방 병소에 대한 조영증강 초음파의 정량적 분석을 통한 진단 능력 평가와 동적 조영증강 유방 자기공명영상 결과와의 비교)

  • Sei Young Lee;Ok Hee Woo;Hye Seon Shin;Sung Eun Song;Kyu Ran Cho;Bo Kyoung Seo;Soon Young Hwang
    • Journal of the Korean Society of Radiology
    • /
    • 제82권4호
    • /
    • pp.889-902
    • /
    • 2021
  • Purpose To assess the diagnostic performance of contrast-enhanced ultrasound (CEUS) for additional MR-detected enhancing lesions and to determine whether or not kinetic pattern results comparable to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast can be obtained using the quantitative analysis of CEUS. Materials and Methods In this single-center prospective study, a total of 71 additional MR-detected breast lesions were included. CEUS examination was performed, and lesions were categorized according to the Breast Imaging-Reporting and Data System (BI-RADS). The sensitivity, specificity, and diagnostic accuracy of CEUS were calculated by comparing the BI-RADS category to the final pathology results. The degree of agreement between CEUS and DCE-MRI kinetic patterns was evaluated using weighted kappa. Results On CEUS, 46 lesions were assigned as BI-RADS category 4B, 4C, or 5, while 25 lesions category 3 or 4A. The diagnostic performance of CEUS for enhancing lesions on DCE-MRI was excellent, with 84.9% sensitivity, 94.4% specificity, and 97.8% positive predictive value. A total of 57/71 (80%) lesions had correlating kinetic patterns and showed good agreement (weighted kappa = 0.66) between CEUS and DCE-MRI. Benign lesions showed excellent agreement (weighted kappa = 0.84), and invasive ductal carcinoma (IDC) showed good agreement (weighted kappa = 0.69). Conclusion The diagnostic performance of CEUS for additional MR-detected breast lesions was excellent. Accurate kinetic pattern assessment, fairly comparable to DCE-MRI, can be obtained for benign and IDC lesions using CEUS.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • 제24권1호
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Usefulness of Gated RapidArc Radiation Therapy Patient evaluation and applied with the Amplitude mode (호흡 동조 체적 세기조절 회전 방사선치료의 유용성 평가와 진폭모드를 이용한 환자적용)

  • Kim, Sung Ki;Lim, Hhyun Sil;Kim, Wan Sun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제26권1호
    • /
    • pp.29-35
    • /
    • 2014
  • Purpose : This study has already started commercial Gated RapidArc automation equipment which was not previously in the Gated radiation therapy can be performed simultaneously with the VMAT Gated RapidArc radiation therapy to the accuracy of the analysis to evaluate the usability, Amplitude mode applied to the patient. Materials and Methods : The analysis of the distribution of radiation dose equivalent quality solid water phantom and GafChromic film was used Film QA film analysis program using the Gamma factor (3%, 3 mm). Three-dimensional dose distribution in order to check the accuracy of Matrixx dosimetry equipment and Compass was used for dose analysis program. Periodic breathing synchronized with solid phantom signals Phantom 4D Phantom and Varian RPM was created by breathing synchronized system, free breathing and breath holding at each of the dose distribution was analyzed. In order to apply to four patients from February 2013 to August 2013 with liver cancer targets enough to get a picture of 4DCT respiratory cycle and then patients are pratice to meet patient's breathing cycle phase mode using the patient eye goggles to see the pattern of the respiratory cycle to be able to follow exactly in a while 4DCT images were acquired. Gated RapidArc treatment Amplitude mode in order to create the breathing cycle breathing performed three times, and then at intervals of 40% to 60% 5-6 seconds and breathing exercises that can not stand (Fig. 5), 40% While they are treated 60% in the interval Beam On hold your breath when you press the button in a way that was treated with semi-automatic. Results : Non-respiratory and respiratory rotational intensity modulated radiation therapy technique absolute calculation dose of using computerized treatment plan were shown a difference of less than 1%, the difference between treatment technique was also less than 1%. Gamma (3%, 3 mm) and showed 99% agreement, each organ-specific dose difference were generally greater than 95% agreement. The rotational intensity modulated radiation therapy, respiratory synchronized to the respiratory cycle created Amplitude mode and the actual patient's breathing cycle could be seen that a good agreement. Conclusion : When you are treated Non-respiratory and respiratory method between volumetric intensity modulated radiation therapy rotation of the absolute dose and dose distribution showed a very good agreement. This breathing technique tuning volumetric intensity modulated radiation therapy using a rotary moving along the thoracic or abdominal breathing can be applied to the treatment of tumors is considered. The actual treatment of patients through the goggles of the respiratory cycle to create Amplitude mode Gated RapidArc treatment equipment that does not automatically apply to the results about 5-6 seconds stopped breathing in breathing synchronized rotary volumetric intensity modulated radiation therapy facilitate could see complement.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • 제18권3호
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

Mapping of the Righteous Tree Selection for a Given Site Using Digital Terrain Analysis on a Central Temperate Forest (수치지형해석(數値地形解析)에 의한 온대중부림(溫帶中部林)의 적지적수도(適地適樹圖) 작성(作成))

  • Kang, Young-Ho;Jeong, Jin-Hyun;Kim, Young-Kul;Park, Jae-Wook
    • Journal of Korean Society of Forest Science
    • /
    • 제86권2호
    • /
    • pp.241-250
    • /
    • 1997
  • The study was conducted to make a map for selecting righteous tree species for each site by digital terrain analysis. We set an algorithmic value for each tree species' characteristics with distribution pattern analysis, and the soil types were digitized from data indicated on soil map. Mean altitude, slope, aspect and micro-topography were estimated from the digital map for each block which had been calculated by regression equations with altitude. The results obtained from the study could be summarized as follows 1. We could develope a method to select righteous tree species for a given site with concern of soil, forest condition and topographic factors on Muju-Gun in Chonbuk province(2,500ha) by the terrain analysis and multi-variate digital map with a personal computer. 2. The brown forest soils were major soil types for the study area, and 29 tree species were occurred with Pinus densiflora as a dominant species. The differences in site condition and soil properties resulted in site quality differences for each tree species. 3. We tried to figure out the accuracy of a basic program(DTM.BAS) enterprised for this study with comparing the mean altitude and aspect calculated from the topographic terrain analysis map and those from surveyed data. The differences between the values were less than 5% which could be accepted as a statistically allowable value for altitude, as well as the values for aspect showed no differences between both the mean altitude and aspect. The result may indicate that the program can be used further in efficiency. 4. From the righteous-site selection map, the 2nd group(R, $B_1$) took the largest area with 46% followed by non-forest area (L) with 23%, the 5th group with 7% and the 4th group with 5%, respectively. The other groups occupied less than 6%. 5. We suggested four types of management tools by silvicultural tree species with considering soil type and topographic conditions.

  • PDF

A Double-Blind Comparison of Paroxetine and Amitriptyline in the Treatment of Depression Accompanied by Alcoholism : Behavioral Side Effects during the First 2 Weeks of Treatment (주정중독에 동반된 우울증의 치료에서 Paroxetine과 Amitriptyline의 이중맹 비교 : 치료초기 2주 동안의 행동학적 부작용)

  • Yoon, Jin-Sang;Yoon, Bo-Hyun;Choi, Tae-Seok;Kim, Yong-Bum;Lee, Hyung-Yung
    • Korean Journal of Biological Psychiatry
    • /
    • 제3권2호
    • /
    • pp.277-287
    • /
    • 1996
  • Objective : It has been proposed that cognition and related aspects of mental functioning are decreased in depression as well as in alcoholism. The objective of the study was to compare behavioral side effects of paroxetine and amitriptyline in depressed patients accompanied by alcoholism. The focused comparisons were drug effects concerning psychomotor performance, cognitive function, sleep and daytime sleepiness during the first 2 weeks of treatment. Methods : After an alcohol detoxification period(3 weeks) and a washout period(1 week), a total of 20 male inpatients with alcohol use disorder (DSM-IV), who also had a major depressive episode(DSM-IV), were treated double-blind with paroxetine 20mg/day(n=10) or amitriptyline 25mg/day(n=10) for 2 weeks. All patients were required to have a scare of at least 18 respectively on bath the Hamilton Rating Scale far Depression(HAM-D) and Beck Depression Inventory(BDI) at pre-drug baseline. Patients randomized to paroxetine received active medication in the morning and placebo in the evening whereas those randomized to amitriptyline received active medication in the evening and placebo in the morning. All patients performed the various tasks in a test battery at baseline and at days 3, 7 and 14. The test battery included : critical flicker fusion threshold for sensory information processing capacity : choice reaction time for gross psychomotor performance : tracking accuracy and latency of response to peripheral stimulus as a measure of line sensorimotor co-ordination and divided attention : digit symbol substitution as a measure of sustained attention and concentration. To rate perceived sleep and daytime sleepiness, 10cm line Visual analogue scales were employed at baseline and at days 3, 7 and 14. The subjective rating scales were adapted far this study from Leeds sleep Evaluation Questionnaire and Epworth Sleepiness Scale. In addition a comprehensive side effect assessment, using the UKU side effect rating scale, was carried out at baseline and at days 7 and 14. The efficacy of treatment was evaluated using HAM-D, BDI and clinical global impression far severity and improvement at days 7 and 14. Results : The pattern of results indicated thai paroxetine improved performance an mast of the lest variables and also improved sleep with no effect on daytime sleepiness aver the study period. In contrast, amitriptyline produced disruption of performance on same tests and improved sleep with increased daytime sleepiness in particular at day 3. On the UKU side effect rating scale, mare side effects were registered an amitriptyline. The therapeutic efficacy was observed in favor of paroxetine early in day 7. Conclusion : These results demonstrated thai paroxetine in much better than amitriptyline for the treatment of depressed patients accompained by alcoholism at least in terms of behavioral safety and tolerability, furthermore the results may assist in explaining the therapeutic outcome of paroxetine. For example, and earlier onset of antidepressant action of paroxetine may be caused by early improved cognitive function or by contributing to good compliance with treatment.

  • PDF

Relationship Analysis between Lineaments and Epicenters using Hotspot Analysis: The Case of Geochang Region, South Korea (핫스팟 분석을 통한 거창지역의 선구조선과 진앙의 상관관계 분석)

  • Jo, Hyun-Woo;Chi, Kwang-Hoon;Cha, Sungeun;Kim, Eunji;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • 제33권5_1호
    • /
    • pp.469-480
    • /
    • 2017
  • This study aims to understand the relationship between lineaments and epicenters in Geochang region, Gyungsangnam-do, South Korea. An instrumental observation of earthquakes has been started by Korea Meteorological Administration (KMA) since 1978 and there were 6 earthquakes with magnitude ranging 2 to 2.5 in Geochang region from 1978 to 2016. Lineaments were extracted from LANDSAT 8 satellite image and shaded relief map displayed in 3-dimension using Digital Elevation Model (DEM). Then, lineament density was statistically examined by hotspot analysis. Hexagonal grids were generated to perform the analysis because hexagonal pattern expresses lineaments with less discontinuity than square girds, and the size of the grid was selected to minimize a variance of lineament density. Since hotspot analysis measures the extent of clustering with Z score, Z scores computed with lineaments' frequency ($L_f$), length ($L_d$), and intersection ($L_t$) were used to find lineament clusters in the density map. Furthermore, the Z scores were extracted from the epicenters and examined to see the relevance of each density elements to epicenters. As a result, 15 among 18 densities,recorded as 3 elements in 6 epicenters, were higher than 1.65 which is 95% of the standard normal distribution. This indicates that epicenters coincide with high density area. Especially, $L_f$ and $L_t$ had a significant relationship with epicenter, being located in upper 95% of the standard normal distribution, except for one epicenter in $L_t$. This study can be used to identify potential seismic zones by improving the accuracy of expressing lineaments' spatial distribution and analyzing relationship between lineament density and epicenter. However, additional studies in wider study area with more epicenters are recommended to promote the results.

Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012) (최근 MODIS 자료(2009-2012)를 이용한 천리안 관측 지역의 적외채널 방출률 자료 개선)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • 제30권1호
    • /
    • pp.109-126
    • /
    • 2014
  • We improved the Land Surface Emissivity (LSE) data (Kongju National University LSE v.2: KNULSE_v2) over the Communication, Ocean and Meteorological Satellite (COMS) observation region using recent(2009-2012) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The surface emissivity was derived using the Vegetation Cover Method (VCM) based on the assumption that the pixel is only composed of ground and vegetation. The main issues addressed in this study are as follows: 1) the impacts of snow cover are included using Normalized Difference Snow Index (NDSI) data, 2) the number of channels is extended from two (11, 12 ${\mu}m$) to four channels (3.7, 8.7, 11, 12 ${\mu}m$), 3) the land cover map data is also updated using the optimized remapping of the five state-of-the-art land cover maps, and 4) the latest look-up table for the emissivity of land surface according to the land cover is used. The updated emissivity data showed a strong seasonal variation with high and low values for the summer and winter, respectively. However, the surface emissivity over the desert or evergreen tree areas showed a relatively weak seasonal variation irrespective of the channels. The snow cover generally increases the emissivity of 3.7, 8.7, and 11 ${\mu}m$ but decreases that of 12 ${\mu}m$. As the results show, the pattern correlation between the updated emissivity data and the MODIS LSE data is clearly increased for the winter season, in particular, the 11 ${\mu}m$. However, the differences between the two emissivity data are slightly increased with a maximum increase in the 3.7 ${\mu}m$. The emissivity data updated in this study can be used for the improvement of accuracy of land surface temperature derived from the infrared channel data of COMS.

Accuracy of Spirometry at Predicting Restrictive Pulmonary Impairment (제한성 환기장애의 진단에서 폐활량검사의 정확성)

  • Ahn, Young Mee;Koh, Won-Jung;Kim, Cheol Hong;Lim, Seong Yong;An, Chang Hyeok;Suh, Gee Young;Chung, Man Pyo;Kim, Hojoong;Kwon, O Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제54권3호
    • /
    • pp.330-337
    • /
    • 2003
  • Background : Low spirometric forced vital capacity(FVC) in conjunction with a normal or high ratio of the forced expiratory volume at 1 second to the forced vital capacity($FEV_1$/FVC%) has traditionally been classified as a restrictive abnormality. However, the gold-standard diagnosis of a restrictive pulmonary impairment requires a measurement of the total lung capacity (TLC). This study was performed to determine the predictive value of spirometric measurements of the FVC for diagnosing a restrictive pulmonary abnormality. Methods : Test results from 1,371 adult patients who undertook both spirometry and lung volume measurements on the same visit from January 1999 to December 2000 were enrolled in this study. The test values for the FVC, the TLC that was below 80% of predicted value, and a $FEV_1$/FVC% that was below 70%, were classified as being abnormal. Results : Of the 1,371 patients, 353 patients had a reduced a FVC. Of these patients, 186 patients had a reduced TLC. Therefore, the positive predictive value was 52.7%. Of the 196 patients with a normal $FEV_1$/FVC% and a reduced FVC, 148(75.5%) patients had a lower TLC. Thirty eight (24.2%) patients out of 157 patients with a low $FEV_1$/FVC% and a low FVC showed a restrictive defect. Conclusion : Spirometry is useful to rule out a restrictive pulmonary abnormality, but a restrictive pattern on the spirometry dose not mean there is a true restrictive disease. For the patients with a low FVC, TLC measurements are essential for diagnosing a restrictive pulmonary impairment.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • 제36권2_2호
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.