• 제목/요약/키워드: Pattern Accuracy

검색결과 1,351건 처리시간 0.026초

SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화 (Variation on Estimated Values of Radioactivity Concentration according to the Change of the Acquisition Time of SPECT/CT)

  • 김지현;박훈희;이주영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권6호
    • /
    • pp.645-653
    • /
    • 2021
  • With the recent development of precision medicine(Theranostics), interest and utilization of the quantitative function of SPECT/CT are increasing. This study aims to investigate the effect on the radioactivity concentration estimate by the increase or decrease in the total time of SPECT/CT imaging conditions. A standard image was obtained by the conditions of a total acquisition time of 600 sec(10 sec/f × 120 frames) by diluting 99mTc 91.76 MBq in a cylindrical phantom filled with sterile water, and a comparative image was obtained by increasing the total acquisition time by -90%, -75%, -50%, -25%, +50%, +100%. The CNR, radioactive concentration estimate(cps/ml), and the variation rate(%) of the recovery coefficient(RC) were analyzed by measuring the overall coefficient of interest in each image. The results[CNR, Radiation Concentration, RC] by the change in the number of projections for each increase or decrease rate(-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results[CNR, Radiation Concentration, RC] by the acquisition time change for each increase or decrease rate(-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at -90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Image quality(CNR) showed a pattern of change in proportion to the increase or decrease in the total acquisition time of SPECT/CT, but the result at quantitative evaluation showed a change of less than 5% in all experimental conditions, maintaining quantitative accuracy(RC less than 0.05) without much influence.

머신러닝을 이용한 해빈단면 변화 예측 (Prediction of Beach Profile Change Using Machine Learning Technique)

  • 심규태;조병선;김규한
    • 대한토목학회논문집
    • /
    • 제42권5호
    • /
    • pp.639-650
    • /
    • 2022
  • 대규모 표사이동으로 인해 침·퇴적이 발생되는 해안에서는 시간이력에 따라 그 현상이 가속화되는 경향이 있기 때문에 적절하고도 시급한 대책을 강구하는 것이 중요하다. 해안침식의 대책방안 중 환경친화적 대책으로 알려진 양빈공법의 경우 입경의 크기에 따라 침식양상이 변화되므로 적정 입경의 크기, 범위 등에 대해 결정하기 위해서는 면밀한 검토가 필요하다. 본 연구에서는 양빈사의 입경변화와 부분양빈의 적용, 파랑과 바람이 공존하는 조건 등을 변수로 설정하였을 때 발생되는 지형변화의 특성을 검토하고자 하였다. 이러한 요인들은 수치모형실험에서 해석하기 어려운 부분이 존재하기 때문에 수리모형실험을 통해 정성적인 해석을 수행하거나 양빈수행 이후에 현장모니터링 등을 통해 그 효과를 검토하게 된다. 하지만 실험과 모니터링 등은 제반사항이 발생되기 때문에 다양한 조건에 대한 예측 연구에는 어려움이 존재한다. 본 논문에서는 빅데이터의 활용을 통한 머신러닝 기법을 이용하여 침·퇴적 경향을 재현함으로써 발생 가능한 현상에 대해 예측함과 동시에 머신러닝 기법의 적용성을 검토하고자 하였다. 학습데이터는 수리모형실험결과를 이용하였으며 연구결과 머신러닝을 이용한 지형변화는 단기예측의 경우 기존연구와 유사한 경향을 보이는 것으로 나타났으나 세굴 및 모래톱의 형성 등에서는 다소 차이가 존재하는 것을 확인할 수 있었다.

다변수 Bidirectional RNN을 이용한 표층수온 결측 데이터 보간 (Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN)

  • 신용탁;김동훈;김현재;임채욱;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.109-118
    • /
    • 2022
  • 정점 표층 수온 관측 데이터 중 결측 구간의 데이터를 양방향 순환신경망(Bidirectional Recurrent Neural Network, BiRNN) 기법을 이용하여 보간하였다. 인공지능 기법 중 시계열 데이터에 일반적으로 활용되는 Recurrent Neural Networks(RNNs)은 결측 추정 위치까지의 시간 흐름 방향 또는 역방향으로만 추정하기 때문에 장기 결측 구간에는 추정 성능이 떨어진다. 반면, 본 연구에서는 결측 구간 전후의 양방향으로 추정을 하여 장기 결측 데이터에 대해서도 추정 성능을 높일 수 있다. 또한 관측점 주위의 가용한 모든 데이터(수온, 기온, 바람장, 기압, 습도)를 사용함으로써, 이들 상관관계로부터 보간 데이터를 함께 추정하도록 하여 보간 성능을 더욱 높이고자 하였다. 성능 검증을 위하여 통계 기반 모델인 Multivariate Imputation by Chained Equations(MICE)와 기계학습 기반의 Random Forest 모델, 그리고 Long Short-Term Memory(LSTM)을 이용한 RNN 모델과 비교하였다. 7일간의 장기 결측에 대한 보간에 대해서 BiRNN/통계 모델들의 평균 정확도가 각각 70.8%/61.2%이며 평균 오차가 각각 0.28도/0.44도로 BiRNN 모델이 다른 모델보다 좋은 성능을 보인다. 결측 패턴을 나타내는 temporal decay factor를 적용함으로써 BiRNN 기법이 결측 구간이 길어질수록 보간 성능이 기존 방법보다 우수한 것으로 판단된다.

오토인코더 기반의 외부망 적대적 사이버 활동 징후 감지 (Detection of Signs of Hostile Cyber Activity against External Networks based on Autoencoder)

  • 박한솔;김국진;정재영;장지수;윤재필;신동규
    • 인터넷정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.39-48
    • /
    • 2022
  • 전 세계적으로 사이버 공격은 계속 증가해 왔으며 그 피해는 정부 시설을 넘어 민간인들에게 영향을 미치고 있다. 이러한 문제로 사이버 이상징후를 조기에 식별하여 탐지할 수 있는 시스템 개발의 중요성이 강조되었다. 위와 같이, 사이버 이상징후를 효과적으로 식별하기 위해 BGP(Border Gateway Protocol) 데이터를 머신러닝 모델을 통해 학습하고, 이를 이상징후로 식별하는 여러 연구가 진행되었다. 그러나 BGP 데이터는 이상 데이터가 정상 데이터보다 적은 불균형 데이터(Imbalanced data)이다. 이는, 모델에 학습이 편향된 결과를 가지게 되어 결과에 대한 신뢰성을 감소시킨다. 또한, 실제 사이버 상황에서 보안 담당자들이 머신러닝의 정형적인 결과로 사이버 상황을 인식시킬 수 없는 한계도 존재한다. 따라서 본 논문에서는 전 세계 네트워크 기록을 보관하는 BGP(Border Gateway Protocol)를 조사하고, SMOTE(Synthetic Minority Over-sampling Technique) 활용해 불균형 데이터 문제를 해결한다. 그 후, 사이버 공방(Cyber Range) 상황을 가정하여, 오토인코더를 통해 사이버 이상징후 분류하고 분류된 데이터를 가시화한다. 머신러닝 모델인 오토인코더는 정상 데이터의 패턴을 학습시켜 이상 데이터를 분류하는 성능을 92.4%의 정확도를 도출했고 보조 지표도 90%의 성능을 보여 결과에 대한 신뢰성을 확보한다. 또한, 혼잡한 사이버 공간을 가시화하여 효율적으로 상황을 인식할 수 있기에 사이버 공격에 효과적으로 방어할 수 있다고 전망된다.

최적화된 확률 모델을 이용한 다양한 품질의 지문분류 (Various Quality Fingerprint Classification Using the Optimal Stochastic Models)

  • 정혜욱;이지형
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.143-151
    • /
    • 2010
  • 지문분류는 1:N 지문인식 시스템의 효율성을 높이는 단계로 지문의 매칭 시간 단축과 인식의 정확성을 높여주는 역할을 한다. 지문 각 클래스의 융선 패턴은 한 개 이상의 클래스와 중복되는 성질을 가지기 때문에 지문분류 작업은 어렵다. 또한 잡음을 많이 포함하거나 예외적인 입력 상태인 경우에도 분류 작업은 어려워진다. 본 논문에서는 다양한 품질의 지문을 효과적으로 분류하기 위해 지문의 방향특징을 이용해 확률 모델을 설계하고, 이를 최적화 하여 지문분류를 수행하는 방법을 제안하였다. 지문 융선을 픽셀단위로 탐색하여 방향 값을 산출하고, 산출된 방향 값을 일정 픽셀 단위로 병합하여 지문의 방향특징을 추출한다. 추출된 방향 특징을 이용해 확률론적 정보추출 및 인식 방식인 마코프 모델을 이용하여 지문의 클래스별 마코프 모델을 생성한다. 생성된 클래스별 마코프 모델의 상태전이 행렬을 분석하여 클래스별 분류 모델의 가중치 항목을 결정하고 유전자 알고리즘을 이용하여 지문분류 성능을 향상시킬 수 있는 최적의 수치를 찾아낸다. 유전알고리즘에 의해 최적화된 분류모델에 다양한 품질의 지문 데이터베이스를 적용하여 실험해 본 결과 최적화 되기 전의 분류 모델에 비해 우수한 분류성능을 보였다. 또한 실험에 사용한 다양한 품질의 데이터베이스를 분석해본 결과 제안한 방법은 특이점 유, 무 및 상태에 독립적으로 예외적인 입력상황의 지문에 대해 효율적으로 지분분류를 수행했다.

MobileNetV3 기반 요검사 서비스 어플리케이션 구현 (Implementation of Urinalysis Service Application based on MobileNetV3)

  • 박기조;최승환;김경석
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.41-46
    • /
    • 2023
  • 인체 소변은 혈액 내의 노폐물을 배출하는 과정으로 채취가 쉽고 다양한 물질들이 포함되어 있습니다. 요검사는 이를 통해 질병, 건강상태, 요로 감염 여부 등을 확인하는 용도로 사용됩니다. 요검사에는 물리적 성상 검사, 화학적 검사, 현미경 검사의 세 가지 방법이 있으며, 화학적 검사는 요검사지를 사용하여 쉽게 결과를 확인할 수 있다. 요검사지에는 다양한 항목들을 검사할 수 있으며, 이를 통해 다양한 질병들을 확인할 수 있다. 최근 스마트폰의 보급으로 스마트폰을 이용한 요검사지 판독 연구가 진행되고 있다. 스마트폰을 이용하여 요검사지의 색 변화를 감지하고 판독하는 방법이 있다. 이러한 방법은 RGB값과 색 차이 공식을 사용하여 판별한다. 그러나 다양한 환경 요인으로 인해 정확도가 떨어지는 문제가 있다. 본 논문은 이러한 문제를 해결하기 위해 딥러닝 모델을 적용한다. 특히, 경량화된 CNN(Convolutional Neural Networks) 모델을 사용하여 스마트폰 내에서 요검사지의 색 판별을 개선한다. CNN은 이미지 인식과 패턴 찾기에 유용한 모델로, 경량화된 버전도 사용 가능하다. 이를 통해 스마트폰에서 딥러닝 모델을 운영하고 정확한 요검사지 결과를 추출할 수 있다. 요검사지는 다양한 환경에서 촬영하여 딥러닝 모델 학습 이미지를 준비 하였으며 MobileNet V3을 사용하여 요검사 서비스 어플리케이션을 설계하였다.

황해와 동중국해에서의 유의파고와 파향의 시공간 변동성 (Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea)

  • 우혜진;박경애;정광영;변도성;오현주
    • 한국지구과학회지
    • /
    • 제44권1호
    • /
    • pp.1-12
    • /
    • 2023
  • 해양의 파랑은 지구온난화 및 기후변화의 중요한 지표 중 하나로 인식되고 있다. 기후변화와 동아시아 몬순의 영향을 직접적으로 받는 황해 및 동중국해역에서의 유의파고 및 파향의 시공간 변동성 연구가 필요하다. 본 연구에서는 유럽중기예보센터(European Centre for Medium-Range Weather Forecasts; ECMWF)에서 제공하고 있는 5세대 모델 재분석장 (ECMWF Reanalysis 5, ERA5) 자료를 활용하여 황해 및 동중국해역에서의 유의파고와 파향의 공간분포와 계절 및 경년변동을 포함하는 시공간 변동성을 분석하였다. 모델 재분석자료를 활용한 유의파고와 파향의 변동성 분석에 앞서 이어도 해양과학기지 관측 자료와의 비교를 통하여 정확도를 검증하였다. 평균 유의파고는 0.3-1.6 m의 범위를 보였으며 북쪽에 비해 남쪽이 높고 연안에 비해 황해 중심부에서 높은 공간분포 특성을 보였다. 유의파고의 표준편차 또한 평균과 유사한 양상을 나타내었다. 황해에서 유의파고와 파향은 뚜렷한 계절변동성을 보였다. 유의파고의 경우 전반적으로 겨울철에 가장 높았으며 늦봄 또는 초여름에 가장 낮았다. 파향은 계절풍의 영향으로 겨울철에는 주로 남쪽으로 전파되었으며 여름철에는 북쪽으로 전파되는 특성이 나타났다. 유의파고의 계절변동은 여름철 태풍 등의 영향으로 해마다 연 진폭의 큰 변화를 가진 강한 경년변동성을 보였다.

전산유체역학 후류모델 특성에 따른 산악지형 풍력발전단지 후류확산 형태 민감도 분석 (Sensitivity Analysis of Wake Diffusion Patterns in Mountainous Wind Farms according to Wake Model Characteristics on Computational Fluid Dynamics)

  • 김성균;류건화;김영곤;문채주
    • 한국전자통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.265-278
    • /
    • 2022
  • 육·해상 풍력 프로젝트 성공여부는 사업의 경제성 확보에 중점을 두고 있으며, 이는 양질의 풍력자원 확보와 풍력단지 최적배치에 의해 좌우된다. 풍력단지를 배치하는 과정에서 주풍향을 고려한 풍력터빈들의 최적배치 방법이 중요하며, 이는 풍상측에 위치한 구조물을 통과하는 유체가 발생시키는 후류영향을 최소화시키는 것과 연관이 있다. 후류효과 예측성의 정확도는 이를 적절히 모의할 수 있는 후류모델과 모델링 기법에 의해 결정되어지며, 특히 산악 및 다도해지역과 같은 복잡지형에서는 고해상도 기반의 정확한 후류예측이 필수적으로 요구된다. 이에 본 논문에서는 상용 CFD 모델인 WindSim을 활용하여 국내 산악 복잡지형에 위치한 육상풍력단지 예정지의 후류모델별 민감도 분석을 통해 후류확산 형태를 분석하고 향후 복잡지형 풍력발전 프로젝트의 기초연구 자료로 활용하고자 한다.

오디오 부호화기를 위한 스펙트럼 변화 및 MFCC 기반 음성/음악 신호 분류 (Speech/Music Signal Classification Based on Spectrum Flux and MFCC For Audio Coder)

  • 이상길;이인성
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.239-246
    • /
    • 2023
  • 본 논문에서는 오디오 부호화기를 위한 스펙트럼 변화 파라미터와 Mel Frequency Cepstral Coefficients(MFCC) 파라미터를 이용하여 음성과 음악 신호를 분류하는 개루프 방식의 알고리즘을 제안한다. 반응성을 높이기 위해 단구간 특징 파라미터로 MFCC를 사용하고 정확도를 높이기 위해 장구간 특징 파라미터로 스펙트럼 변화를 사용하였다. 전체적인 음성/음악 신호 분류 결정은 단구간 분류와 장구간 분류를 결합하여 이루어진다. 패턴인식을 위해 Gaussian Mixed Model(GMM)을 사용하였고, Expectation Maximization(EM) 알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 다양한 오디오 음원에서 평균적으로 1.5% 분류 오류율을 보였고 단구간 단독 분류 방법 보다 0.9%, 장구간 단독 분류 방법보다 0.6%의 분류 오류율의 성능 개선을 이룰 수 있었다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 USAC 오디오 분류 방법보다 타악기 음악 신호에서 9.1% 분류 오류율, 음성신호에서 5.8% 분류 오류율의 성능 개선을 이룰 수 있었다.

HMM기반 자동음소분할기의 음소분할 오류 유형 분석 (The Error Pattern Analysis of the HMM-Based Automatic Phoneme Segmentation)

  • 김민제;이정철;김종진
    • 한국음향학회지
    • /
    • 제25권5호
    • /
    • pp.213-221
    • /
    • 2006
  • 합성음의 음질을 향상시키기 위하여 분할된 corpora로부터 합성유닛을 선택하여 사용하는 연속음성합성에서 정확한 음소분할은 매우 중요하다. 일반적으로 음소분할은 사람에 의해 수행되지만 많은 작업량으로 인한 시간적 지연, 일관 성 유지 어려움 등 많은 문제가 발생한다. 이에 따라 음성인식에서 도입된 HMM 기반의 자동음소분할이 음성인식, 음성 합성에서 널리 사용되어지고 있지만 음성전문가의 수작업 결과와 비교할 때 HMM 기반 자동음소분할은 오류가 있고, 이는 합성음 품질의 열화의 주요 원인이 되고 있다. 본 논문에서는 HMM 기반의 자동음소분할기를 사용하여 나타난 자동음소분할 결과와 수작업에 의한 음소분할 결과를 비교하고 유형별로 분석함으로써 음성합성의 성능향상을 위해 개선해야 할 문제점들을 제시한다. 실험에서는 ETRI의 표준형 한국어 공통 음성 DB을 사용하였고, 오차의 범위가 20ms를 벗어난 경우를 분절 오류로 간주하였다. 실험 결과 여성화자의 경우 파열음 + 모음, 파찰음 + 모음, 모음 + 유음 음소쌍에서는 각각 약 99%, 99.5%, 99%의 높은 정확률을 보인 반면, 폐쇄음 + 비음, 폐쇄음 + 유음, 비음 + 유음 음소쌍에서는 44.89%, 50%, 55% 의 낮은 정확률을 보였으며, 남성화자에 대한 실험결과에서도 유사한 경향을 보였다.