• Title/Summary/Keyword: Patient-specific splints

Search Result 5, Processing Time 0.022 seconds

Quantitative analysis of the TMJ movement with a new mandibular movement tracking and simulation system

  • Kim, Dae-Seung;Hwang, Soon-Jung;Choi, Soon-Chul;Lee, Sam-Sun;Heo, Min-Suk;Heo, Kyung-Hoe;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.38 no.4
    • /
    • pp.203-208
    • /
    • 2008
  • Purpose : The purpose of this study was to develop a system for the measurement and simulation of the TMJ movement and to analyze the mandibular movement quantitatively. Materials and Methods : We devised patient-specific splints and a registration body for the TMJ movement tracking. The mandibular movements of the 12 subjects with facial deformity and 3 controls were obtained by using an optical tracking system and the patient-specific splints. The mandibular part was manually segmented from the CT volume data of a patient. Three-dimensional surface models of the maxilla and the mandible were constructed using the segmented data. The continuous movement of the mandible with respect to the maxilla could be simulated by applying the recorded positions sequentially. Trajectories of the selected reference points were calculated during simulation and analyzed. Results : The selected points were the most superior point of bilateral condyle, lower incisor point, and pogonion. There were significant differences (P<0.05) between control group and pre-surgical group in the maximum displacement of left superior condyle, lower incisor, and pogonion in vertical direction. Differences in the maximum lengths of the right and the left condyle were 0.59${\pm}$0.30 mm in pre-surgical group and 2.69${\pm}$2.63 mm in control group, which showed a significant difference (P<0.005). The maximum of differences between lengths of the right and the left calculated during one cycle also showed a significant difference between two groups (P<0.05). Conclusion : Significant differences in mandibular movements between the groups implies that facial deformity have an effect on the movement asymmetry of the mandible. (Korean J Oral Maxillofac Radiol 2008; 38 : 203-8)

  • PDF

Creating protective appliances for preventing dental injury during endotracheal intubation using intraoral scanning and 3D printing: a technical note

  • Cho, Jin-Hyung;Park, Wonse;Park, Kyeong-Mee;Kim, Seo-Yul;Kim, Kee-Deog
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2017
  • Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication.

Pain in amyotrophic lateral sclerosis: a narrative review

  • Kwak, Soyoung
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition characterized by loss of motor neurons, resulting in motor weakness of the limbs and/or bulbar muscles. Pain is a prevalent but neglected symptom of ALS, and it has a significant negative impact on the quality of life of patients and their caregivers. This review outlines the epidemiology, clinical characteristics, underlying mechanisms, and management strategies of pain in ALS to improve clinical practice and patient outcomes related to pain. Pain is a prevalent symptom among patients with ALS, with a variable reported prevalence. It may occur at any stage of the disease and can involve any part of the body without a specific pattern. Primary pain includes neuropathic pain and pain from spasticity or cramps, while secondary pain is mainly nociceptive, occurring with the progression of muscle weakness and atrophy, prolonged immobility causing degenerative changes in joints and connective tissue, and long-term home mechanical ventilation. Prior to treatment, the exact patterns and causes of pain must first be identified, and the treatment should be tailored to each patient. Treatment options can be classified into pharmacological treatments, including nonsteroidal anti-inflammatory drugs, antiepileptic drugs, drugs for cramps or spasticity, and opioid; and nonpharmacological treatments, including positioning, splints, joint injections, and physical therapy. The development of standardized and specific assessment tools for pain-specific to ALS is required, as are further studies on treatments to reduce pain, diminish suffering, and improve the quality of life of patients with ALS.

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

A case study on the application of new hand splint using 3D printing (3D 프린팅을 사용해 제작한 새로운 손 보조기 적용 사례연구)

  • Shin, Su-Jung;Ahn, Cho-Keun;Park, Kyoung-Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.25-29
    • /
    • 2017
  • The purpose of this study was to investigate the effect of a new designed splint on the hand function. A new design splint that enlarges the area between thumb and index finger was manufactured using 3D printing. After wearing a new splint the patient was possible to open thumb and hold a small object. She showed improvement in overall hand function and could move eight blocks in box and block test. But grasping a cup without a handle has become more difficult than before. Also there is a disadvantage that it could not be fixed by water. This study is meaningful in that it is the first splint application study using 3D printing. In the future, we expect that various patient-specific splints will be developed through 3D printing in the field of occupational therapy.