• Title/Summary/Keyword: Patient exposure dose

Search Result 385, Processing Time 0.03 seconds

Comparative Analysis of Absorption Doses between Exposed and Unexposed Area on Major Organs During CT Scan (전산화 단층촬영시 주선속내 외의 주요장기 흡수선량 비교분석)

  • 사정호;서태석;최보영;정규회
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2000
  • It is possible to obtain a fast CT scan during breath holding with spiral technique. But the risk of radiation is increased due to detailed and repeated scans. However, the limitation of X-ray doses is not fully specified on CT, yet. Therefore, the purpose of the present study is to define the limitation of X-ray doses on CT The CT unit was somatom plus 4. Alderson Rando phantom, Solenoid water phantom, TLD, and reader were used. For determining adequate position and size of organs, the measurement of distance(${\pm}$2mm) from the midline of vertebral body was performed in 40 women(20~40 years). On the brain scan for 8:8(8mm slice thickness, 8mm/sec movement velocity of the table) and 10:10(10mm slice thickness, 10mm/sec movement velocity of the table) methods, the absorption doses of exposed area of the 10:10 were slightly higher than those of 8:8. The doses of unexposed uterus were negligible on the brain scan for both 8:8 and 10:10. On the chest scan for 8:8, 8:10(8mm slice thickness, 10mm/sec movement velocity of the table), 10:10, 10:12(10mm slice thickness, 12mm/sec movement velocity of the table) and 10:15(10mm slice thickness, 15mm/sec movement velocity of the table) methods, 8:8 method of the absorption doses of exposure area was the most highest and 10:15 method was the most lowest. The absorption doses of 8:10 method was relatively lower than those of the other methods. In conclusion, the 8:10 method is the most suitable to give a low radiation burden to patient without distorting image quality.

  • PDF

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF

In Vitro Intrinsic Radiosensitivity Of Human Squamous Cell Carcinoma in Primary Culture (인체 상피 세포암의 일차 배양을 이용한 방사선 민감도 측정)

  • Choi Eun Kyung;Yang Kwang Mo;Yi Byong Yong;Chang Hyesook;Kim Sang-Yoon;Nam Joo-Hyun;Yu Eunsil;Lee Inchul
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 1994
  • There are a number of reports suggesting that there may be a correlation between the clinical response to radiotherapy in various tumors and the clonogenic survival of cell lines derived from these tumors following exposure to 2 Gy(SF2). Authors conducted this study to determine SF2 for cells in primary culture from surgical specimens. The tumor tissues with squamous cell carcinoma of uterine cervix and head and neck were obtained. The tumor tissues were disaggregated to single cells by incubating with collagenase type w for 2 hours with constant stirring. Single cell suspensions were inoculated in four 24-well plates precoated with cell adhesive matrix. After 24 hours of incubation at 37$ ^{\circ}C $, rows of four wells were then irradiated, consisting of control set and five other sets each receiving doses of 1,2,3,4, and 6 Gy. After incubation for a total of 13 days, the cultures were stained with crystal violet and survival at each dose was determined by quantitative image analysis system, To determine whether cell growth was of epithelial origin, immunocytochemical staining with a mixture of cytokeratin and epithelial monoclonal antibodies were performed on cell cultures. During the period of this study, we received 5 squamous cell carcinoma specimens of head and neck and 20 of uterine cervical carcinoma. Of these, 15 yielded enough cells for radiosensitivity testing. This resulted an overall success rate of 60$ \% $. The mean SF2 value for 15 tumours was 0.55$\pm$0.17 ranging from 0.20 to 0.79. These results indicate that there is a broad range of sensitivities to radiation in same histologic type. So with a large patient population, we plan to determine whether a different SF2 value is associated with tumours that are controlled with radiotherapy than those that are not.

  • PDF

The Assessment of Scattered Ray According to the Beam Thickness of Z-axis in MDCT(Multi Detector Computed Tomography) (MDCT(다배열검출기 전산화단층촬영장치)에서 Z-축의 빔 두께에 따른 산란선의 평가)

  • Ryu, Gwi-Bok;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • The purpose of this study is to measure scattered ray which is occurred except for Z-axis range of the detector in MDCT's iso-center and present the basic data about the standard for reduction of scattered ray. The development of MDCT brings out the enlargement of beam thickness to the patient's Z-axis, which distributes to the increase in exposure dose according to the rise of scattered ray. Also MDCT brings out the increase of scattered ray about 4times more than SDCT. To evaluate scattered ray according to the change of beam thickness on MDCT, we measured scattered ray of MDCT's Z-axis beam thickness by using one 16-slice CTs and two 64-slice CTs. We used the ionization chamber 60ml 2026C as the equipment of measurement. In our results, we found out that the change of scattered ray according to the beam thickness in the same kVp has increase of scattered ray. Secondly we found out the increase of scattered ray according to the increase of kVp. Lastly we found out the decrease of scattered ray according to the increase of the distance from the ionization chamber.

Clinical Usefulness of Implanted Fiducial Markers for Hypofractionated Radiotherapy of Prostate Cancer (전립선암의 소분할 방사선치료 시에 위치표지자 삽입의 유용성)

  • Choi, Young-Min;Ahn, Sung-Hwan;Lee, Hyung-Sik;Hur, Won-Joo;Yoon, Jin-Han;Kim, Tae-Hyo;Kim, Soo-Dong;Yun, Seong-Guk
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.91-98
    • /
    • 2011
  • Purpose: To assess the usefulness of implanted fiducial markers in the setup of hypofractionated radiotherapy for prostate cancer patients by comparing a fiducial marker matched setup with a pelvic bone match. Materials and Methods: Four prostate cancer patients treated with definitive hypofractionated radiotherapy between September 2009 and August 2010 were enrolled in this study. Three gold fiducial markers were implanted into the prostate and through the rectum under ultrasound guidance around a week before radiotherapy. Glycerin enemas were given prior to each radiotherapy planning CT and every radiotherapy session. Hypofractionated radiotherapy was planned for a total dose of 59.5 Gy in daily 3.5 Gy with using the Novalis system. Orthogonal kV X-rays were taken before radiotherapy. Treatment positions were adjusted according to the results from the fusion of the fiducial markers on digitally reconstructed radiographs of a radiotherapy plan with those on orthogonal kV X-rays. When the difference in the coordinates from the fiducial marker fusion was less than 1 mm, the patient position was approved for radiotherapy. A virtual bone matching was carried out at the fiducial marker matched position, and then a setup difference between the fiducial marker matching and bone matching was evaluated. Results: Three patients received a planned 17-fractionated radiotherapy and the rest underwent 16 fractionations. The setup error of the fiducial marker matching was $0.94{\pm}0.62$ mm (range, 0.09 to 3.01 mm; median, 0.81 mm), and the means of the lateral, craniocaudal, and anteroposterior errors were $0.39{\pm}0.34$ mm, $0.46{\pm}0.34$ mm, and $0.57{\pm}0.59$ mm, respectively. The setup error of the pelvic bony matching was $3.15{\pm}2.03$ mm (range, 0.25 to 8.23 mm; median, 2.95 mm), and the error of craniocaudal direction ($2.29{\pm}1.95$ mm) was significantly larger than those of anteroposterior ($1.73{\pm}1.31$ mm) and lateral directions ($0.45{\pm}0.37$ mm), respectively (p<0.05). Incidences of over 3 mm and 5 mm in setup difference among the fractionations were 1.5% and 0% in the fiducial marker matching, respectively, and 49.3% and 17.9% in the pelvic bone matching, respectively. Conclusion: The more precise setup of hypofractionated radiotherapy for prostate cancer patients is feasible with the implanted fiducial marker matching compared with the pelvic bony matching. Therefore, a less marginal expansion of planning target volume produces less radiation exposure to adjacent normal tissues, which could ultimately make hypofractionated radiotherapy safer.