• Title/Summary/Keyword: Patient Positioning System

Search Result 62, Processing Time 0.023 seconds

A Study of Patient Centered Navigation Model for Care Convenience of Large Hospitals Based on Indoor Positioning Technology (실내 측위 기술 기반의 대형병원 진료 편의를 위한 환자 중심형 네비게이션 모델 연구)

  • Park, Chang Min;Yang, Yu Mi;Ryu, Ki Dong;Churn, Jin Hyuk;Cho, Sang Wook;Kim, Woo Je
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.409-412
    • /
    • 2014
  • 본 논문에서는 환자가 실내 측위 기술과 스마트폰을 이용하여 대형 병원의 내부에서 진료 동선을 스스로 찾아갈 수 있도록 하는데 도움을 주는 네비게이션 모델을 제안한다. 정보기술의 비약적인 발전과 함께 실내 측위 기술을 결합한 스마트폰의 위치기반 어플리케이션들이 각광 받게 되었다. 또한, 실내 측위와 관련된 응용 서비스도 새로이 창출되어 점차 이에 대한 관심과 그 정확성을 높이기 위한 연구들이 활발하게 이루어지고 있다. 기존의 실내측위 기법들 중 가장 보편적인 것은 Wi-Fi 신호를 이용 하는 삼각측량 기법으로 초기 구축비용이 저렴하며 서비스 제공 가능 범위가 넓어 본 논문에서 다루고자 하는 장소인 병원의 특성에 알맞다. 따라서 본 모델은 Wi-Fi를 이용하여 사용자의 정확한 위치를 추정하고 진료 프로세스에 따라 경로를 안내를 해주는 네비게이션 서비스를 제공한다. 이를 통하여 환자에게는 진료를 위한 효율적인 동선을 제공함과 동시에 대형 병원에서는 인적, 물적 낭비를 줄이는데 도움이 되고자 한다.

  • PDF

A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters (슬관절 전치환술용 3차원 시술변수 추출 시스템)

  • Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

Feasibility Study of Patient Specific Quality Assurance Using Transit Dosimetry Based on Measurement with an Electronic Portal Imaging Device

  • Baek, Tae Seong;Chung, Eun Ji;Son, Jaeman;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.54-60
    • /
    • 2017
  • This study was designed to measure transit dose with an electronic portal imaging device (EPID) in eight patients treated with intensity modulated radiotherapy (IMRT), and to verify the accuracy of dose delivery to patients. The calculated dose map of the treatment planning system (TPS) was compared with the EPID based dose measured on the same plane with a gamma index method. The plan for each patient was verified prior to treatment with a diode array (MapCHECK) and portal dose image prediction (PDIP). To simulate possible patient positioning errors during treatment, outcomes were evaluated after an anthropomorphic phantom was displaced 5 and 10 mm in various directions. Based on 3%/3 mm criteria, the $mean{\pm}SD$ passing rates of MapCHECK, PDIP (pre-treatment QA) for 47 IMRT were $99.8{\pm}0.1%$, $99.0{\pm}0.7%$, and, respectively. Besides, passing rates using transit dosimetry was $90.0{\pm}1.5%$ for the same condition. Setup errors of 5 and 10 mm reduced the mean passing rates by 1.3% and 3.0% (inferior to superior), 2.2% and 4.3% (superior to inferior), 5.9% and 10.9% (left to right), and 8.9% and 16.3% (right to left), respectively. These findings suggest that the transit dose-based IMRT verification method using EPID, in which the transit dose from patients is compared with the dose map calculated from the TPS, may be useful in verifying various errors including setup and/or patient positioning error, inhomogeneity and target motions.

The Effect of Patients Positioning System on the Prescription Dose in Radiation Therapy (방사선치료 시 자세확인시스템이 처방선량에 미치는 영향)

  • Kim, Jeong-Ho;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • Planning dose must be delivered accurately for radiation therapy. Also, It must be needed accurately setup. However, patient positioning images were need for accuracy setup. Then patient positioning images is followed by additional exposure to radiation. For 45 points in the phantom, we measured the doses for 6 MV and 10 MV photon beams, OBI(On Board Imager) and CBCT(Conebeam Computed Tomography) using OSLD(Optically Stimulated Luminescent Dosimeter). We compared the differences in the cases where posture confirmation imaging at each point was added to the treatment dose. Also, we tried to propose a photography cycle that satisfies the 5% recommended by AAPM(The American Association of Physicists in Medicine). As a result, a maximum of 98.6 cGy was obtained at a minimum of 45.27 cGy at the 6 MV, a maximum of 99.66 cGy at a minimum of 53.34 cGy at the 10 MV, a maximum of 2.64 cGy at the minimum of 0.19 cGy for the OBI and a maximum of 17.18 cGy at the minimum of 0.54 cGy for the CBCT.The ratio of the radiation dose to the treatment dose is 3.49% in the case of 2D imaging and the maximum is 22.65% in the case of 3D imaging. Therefore, tolerance of 2D image is 1 exposure per day, and 3D image is 1 exposure per week. And it is need to calculation of separate in the parallelism at additional study.

Labia Majora Share

  • Lee, Hanjing;Yap, Yan Lin;Low, Jeffrey Jen Hui;Lim, Jane
    • Archives of Plastic Surgery
    • /
    • v.44 no.1
    • /
    • pp.80-84
    • /
    • 2017
  • Defects involving specialised areas with characteristic anatomical features, such as the nipple, upper eyelid, and lip, benefit greatly from the use of sharing procedures. The vulva, a complex 3-dimensional structure, can also be reconstructed through a sharing procedure drawing upon the contralateral vulva. In this report, we present the interesting case of a patient with chronic, massive, localised lymphedema of her left labia majora that was resected in 2011. Five years later, she presented with squamous cell carcinoma over the left vulva region, which is rarely associated with chronic lymphedema. To the best of our knowledge, our management of the radical vulvectomy defect with a labia majora sharing procedure is novel and has not been previously described. The labia major flap presented in this report is a shared flap; that is, a transposition flap based on the dorsal clitoral artery, which has consistent vascular anatomy, making this flap durable and reliable. This procedure epitomises the principle of replacing like with like, does not interfere with leg movement or patient positioning, has minimal donor site morbidity, and preserves other locoregional flap options for future reconstruction. One limitation is the need for a lax contralateral vulva. This labia majora sharing procedure is a viable option in carefully selected patients.

Identifying Unusual Days

  • Kim, Min-Kyong;Kotz, David
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.1
    • /
    • pp.71-84
    • /
    • 2011
  • Pervasive applications such as digital memories or patient monitors collect a vast amount of data. One key challenge in these systems is how to extract interesting or unusual information. Because users cannot anticipate their future interests in the data when the data is stored, it is hard to provide appropriate indexes. As location-tracking technologies, such as global positioning system, have become ubiquitous, digital cameras or other pervasive systems record location information along with the data. In this paper, we present an automatic approach to identify unusual data using location information. Given the location information, our system identifies unusual days, that is, days with unusual mobility patterns. We evaluated our detection system using a real wireless trace, collected at wireless access points, and demonstrated its capabilities. Using our system, we were able to identify days when mobility patterns changed and differentiate days when a user followed a regular pattern from the rest. We also discovered general mobility characteristics. For example, most users had one or more repeating mobility patterns, and repeating mobility patterns did not depend on certain days of the week, except that weekends were different from weekdays.

The Development of Real Time Automatic Patient Position Correction System during the Radiation Therapy Based on CCD: A Feasibility Study (CCD기반의 방사선치료 중 실시간 자동 환자 위치보정 시스템 개발: 타당성 연구)

  • Shin, Dongho;Chung, Kwangzoo;Kim, Meyoung;Son, Jaeman;Yoon, Myonggeun;Lim, Young Kyung;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.191-197
    • /
    • 2013
  • Upon radiation treatment, it is the important factor to monitor the patient's motion during radiation irradiated, since it can determine whether the treatment is successful. Thus, we have developed the system in which the patient's motion is monitored in real time and moving treatment position can be automatically corrected during radiation irradiation. We have developed the patient's position monitoring system in which the patient's position is three dimensionally identified by using two CCD cameras which are orthogonal located around the isocenter. This system uses the image pattern matching technique using a normalized cross-correlation method. We have developed the system in which trigger signal for beam on and off is generated by quantitatively analyzing the changes in a treatment position through delivery of the images taken from CCD cameras to the computer and the motor of moving couch can be controlled. This system was able to automatically correct a patient's position with the resolution of 0.5 mm or less.

Extraction of Impacted Supernumerary Teeth with Navigation System

  • Kim, Ji-Hyoung;Yoo, Byung-Woo;Moon, Seong-Yong
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.74-76
    • /
    • 2016
  • Computer-aided navigation system is helpful in maxillofacial surgery with real time instrument positioning and clear anatomic identification. Generally, completely impacted tooth extraction surgery have e high risk by iatrogenic injury such as, adjacent tooth injury, normal anatomical structure injury. This case report describes performing extraction of impacted supernumerary teeth on anterior maxilla by using the navigation system in a 15 years old male patient.

Evaluation on the Accuracy of the PPS in the Proton Therapy System, Which Uses the Self Made QA Phantom (자체 제작한 QA Phantom을 이용한 양성자 PPS (Patient Positioning System)의 정확성 평가)

  • Lee, Ji-Eun;Kim, Jae-Won;Kang, Dong-Yoon;Choi, Jae-Hyeok;Yeom, Du-Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Purpose: The process of the proton treatment is done by comparing the DRR and DIPS anatomic structure to find the correction factor and use the PPS to use this factor in the treatment. For the accuracy of the patient set up, the PPS uses a 6 axis system to move. Therefore, there needs to be an evaluation for the accuracy between the PPS moving materialization and DIPS correction factor. In order to do this, we will use a self made PPS QA Phantom to measure the accuracy of the PPS. Materials and Methods: We set up a PPS QA Phantom at the center to which a lead marker is attached, which will act instead of the patient anatomic structure. We will use random values to create the 6 axis motions and move the PPS QA Phantom. Then we attain a DIPS image and compare with the DRR image in order to evaluate the accuracy of the correction factor. Results: The average correction factor, after moving the PPS QA Phantom's X, Y, Z axis coordinates together from 1~5 cm, 1 cm at a time, and coming back to the center, are 0.04 cm, 0.026 cm, 0.022 cm, $0.22^{\circ}$, $0.24^{\circ}$, $0^{\circ}$ on the PPS 6 axis. The average correction rate when moving the 6way movement coordinates all from 1 to 2 were 0.06 cm, 0.01 cm, 0.02 cm, $0.1^{\circ}$, $0.3^{\circ}$, $0^{\circ}$ when moved 1 and 0.02 cm, 0.04 cm, 0.01 cm, $0.3^{\circ}$, $0.5^{\circ}$, $0^{\circ}$ when moved 2. Conclusion: After evaluating the correction rates when they come back to the center, we could tell that the Lateral, Longitudinal, Vertical were all in the acceptable scope of 0.5 cm and Rotation, Pitch, Roll were all in the acceptable scope of $1^{\circ}$. Still, for a more accurate proton therapy treatment, we must try to further enhance the image of the DIPS matching system, and exercise regular QA on the equipment to reduce the current rate of mechanical errors.

  • PDF

The Ontology-based Patient Management System using Sensor Data (온톨로지 기반의 센서 데이터를 이용한 환자 관리 시스템)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2073-2078
    • /
    • 2016
  • Recently, there have been many research that recognize the situation using sensors. However, sensor data collection and analysis are still lacking in integration. This is because the data generated by the sensor is difficult to match in terms of metadata and units. Therefore, a methodology for efficiently using data generated from various sensors is needed. In this paper, we propose a system that recognizes the location through information generated from a moving iBeacon. This system constructs the ontology with the data that can recognize the exact position when the patient wearing iBeacon moves in the room. This maps standard items and sensor items, and stores the results of filtering the detected values as knowledge. the system can extract efficient location information by recognizing the value generated by moving the patient carrying iBeacon through the ontology. This can be applied not only to beacons but also to other sensors, and it can be applied variously according to the ontology configuration.