• Title/Summary/Keyword: Pathophysiologic mechanism

Search Result 30, Processing Time 0.029 seconds

Skin Biopsy: Emerging Method for Small Nerve Fiber Evaluation (피부조직검사: 소신경섬유 평가의 유용한 방법)

  • Sohn, Eun Hee
    • Annals of Clinical Neurophysiology
    • /
    • v.17 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • Skin biopsy with investigation of small nerve fiber in human epidermis and dermis has been proven to be a useful method for demonstration of small fiber neuropathy. Quantification of intraepidermal nerve fiber density using anti-Protein Gene Product 9.5 (PGP 9.5) antibody is standardized method to diagnose the small fiber neuropathy. Skin biopsy method also makes it possible to differentiate the type of nerve fibers by using different antibodies. Quantification of dermal structures with different type of nerve fibers could be used to invest pathophysiologic mechanism of diseased state.

Dietary modulation of gut microbiota for the relief of irritable bowel syndrome

  • Kim, Mi-Young;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.411-430
    • /
    • 2021
  • Irritable bowel syndrome (IBS) is a frequently diagnosed gastrointestinal (GI) disorder characterized by recurrent abdominal pain, bloating, and changes in the stool form or frequency without any structural changes and overt inflammation. It is not a life-threatening condition but causes a considerable level of discomfort and distress. Among the many pathophysiologic factors, such as altered GI motility, visceral hypersensitivity, and low-grade mucosal inflammation, as well as other immunologic, psychologic, and genetic factors, gut microbiota imbalance (dysbiosis), which is frequently found in IBS, has been highlighted as an etiology of IBS. Dysbiosis may affect gut mucosal homeostasis, immune function, metabolic regulation, and even visceral motor function. As diet is shown to play a fundamental role in the gut microbiota profile, this review discusses the influence of diet on IBS occurring through the modulation of gut microbiota. Based on previous studies, it appears that dietary modulation of the gut microbiota may be effective for the alleviation of IBS symptoms and, also an effective IBS management strategy based on the underlying mechanism; especially because, IBS currently has no specific treatment owing to its uncertain etiology.

Characteristics of Magnetic Resonance(M.R.) and Comprehension of its Imaging Mechanism (자기공명(M.R.)진단법의 특징 및 그 영상기전의 이해)

  • Chang, Jae-Chun;Hwang, Mi-Soo;Kim, Sun-Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1987
  • Magnetic Resonance (M.R.) is rapidly emerging technique that provides high quality images and potentially provides much more diagnostic information than do conventional imaging modalities. M.R.I. is conceptually quite different from currently used imaging methods. The complex nature of M.R.I. allows a great deal of flexibility in image product ion and available information, and key points are as follows. 1. M.R.I. offers a non-invasive technique with which to gene rate in vivo human images without ionizing radiation and with no known adverse biological effects. 2. Imaging mechanism of M.R.I. is quite different from conventional imaging modality and for more accurate diagnostic application, It is necessary for physician to understand imaging mechanism of M.R.I. 3. M.R. makes available basic chemical parameters that may provide to be useful for diagnostic medical imaging and more specific pathophysiologic information which are not available by alternate techniques. 4. M.R. can be produced by number of different methods. This flexibility allows the imaging technique to be applicated for particular clinical purpose. Multiplanar and three dimensional imaging may extend the imaging process beyond the single section available with current CT. 5. Future directions include efforts to; a. Further development of hard ware b. More fasternning scan time c. Respiratory and cardiac gated imaging d. Imaging of additional nuclei except hydrogen e. Further development of contrast media f. M.R. in vivo spectroscopy g. Real time M.R. imaging.

  • PDF

Pathophysiology of orthostatic tremor: a multiple case study (길입성 진전의 병태생리: 다증 증례 연구)

  • Seo, Man-Wook;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2002
  • Introduction : Orthostatic tremor develops in the legs while standing up with no weakness, pain or imbalance in the leg and the tremor is characteristically not observed when walking. However there have been some confusions about orthostatic tremor in several aspects. For the past ten years, we have observed 4 patients with orthostatic tremor. In each case tests were performed to investigate the following three important areas of inquiry about orthostatic tremor. Firstly, whether this disorder is an independent diagnostic entity or a variant of essential tremor. Secondly, whether the progress of this disorder is specifically related with standing posture. Lastly, the nature of the pathophysiologic mechanism behind the appearance of the tremor when standing after the lapse of a certain latent period and its disappearance upon the commencement of walking. Methods : Our 4 cases of orthostatic tremor were studied clinically, electrophysiologically, and pharmacologically. Electrophysiological tests included tremor spectrum test and electromyography. Results : We observed the presence of this tremor in several other tonic postures, as well as its absence, in a vertically lifted position from all our cases. Our cases registered a variable tremor frequency between 5 and 12 Hz according to the tremor spectrum test and EMG. Furthermore all our 4 cases demonstrated patterns of both synchronous EMG activity and alternating EMG activity at various times in homologous muscles of both legs. Orthostatic tremor was improved significantly with propranolol as well as clonazepam. Conclusions : From the results of our study we drew the following conclusions. It is probable that orthostatic tremor is simply a variant of essential tremor rather than being an independent diagnostic entity and that in most cases its development is specifically related with muscle contraction rather than merely with the act of standing. Furthermore we discovered a clue in the previously described neural control mechanism that the nuclear bag fibers in the muscle spindle have lag time of several seconds in their response to muscle strength and that their baseline does not reset fully in rapidly moving muscle. This neural control mechanism could offer sufficient explanation for the phenomena of tremor appearance when standing and disappearance when walking in orthostatic tremor.

  • PDF

Clinical, Neuroimaging and Neurophysiologic Evidences of Restless Legs Syndrome as a Disorder of Central Nervous System (하지불안증후군이 중추신경계 질환임을 시사하는 임상적, 신경영상학적, 신경생리학적 증거들에 관하여)

  • Jung, Ki-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.10 no.2
    • /
    • pp.98-100
    • /
    • 2008
  • Restless legs syndrome (RLS) is a sensorimotor neurological disorder in which the primary symptom is a compelling urge to move the legs, accompanied by unpleasant and disturbing sensations in the legs. Although pathophysiologic mechanism of RLS is still unclear, several evidences suggest that RLS is related to dysfunction in central nervous system involving brain and spinal cord. L-DOPA, as the precursor of dopamine, as well as dopamine agonists, plays an essential role in the treatment of RLS leading to the assumption of a key role of dopamine function in the pathophysiology of RLS. Patients with RLS have lower levels of dopamine in the substantia nigra and respond to iron administration. Iron, as a cofactor in dopamine production, plays a central role in the etiology of RLS. Functional neuroimaging studies using PET and SPECT support a central striatal D2 receptor abnormality in the pathophysiology of RLS. Functional MRI suggested a central generator of periodic limb movements during sleep (PLMs) in RLS. However, to date, we have no direct evidence of pathogenic mechanisms of RLS.

  • PDF

Effect of the Brain Death on Hemodynamic Changes and Myocardial Damages in Canine Brain Death Model -Hemodynamic and Electrocardiographic Changes in the Brain Death Model Caused by Sudden Increase of Intracranial Pressure- (잡견을 이용한 실험적 뇌사모델에서 뇌사가 혈역학적 변화와 심근손상에 미치는 영향 -제1보;급격한 뇌압의 상승에 의한 뇌사모델에서의 혈역학적 및 심전도학적 변화-)

  • 조명찬
    • Journal of Chest Surgery
    • /
    • v.28 no.5
    • /
    • pp.437-442
    • /
    • 1995
  • We developed an experimental model of brain death using dogs. Brain death was caused by increasing the intracranial pressure[ICP suddenly by injecting saline to an epidural Foley catheter in five female mongrel dogs[weight, 20-25Kg .Hemodynamic and electrocardiographic changes were evaluated continuously during the process of brain death. 1. Abrupt rise of ICP after each injection of saline followed by a rapid decline to a new steady-state level within 15 minutes and the average volume required to induce brain death was 7.6$\pm$0.8ml.2. Body temperature, heart rate, mean pulmonary arterial pressure, left ventricular[LV enddiastolic pressure and cardiac output was not changed significantly during the process of brain death, but there was an increasing tendency.3. Mean arterial pressure and LV maximum +dP/dt increased significantly at the time of brain death.4. Hemodynamic collapse was developed within 140 minutes after brain death.5. Marked sinus bradycardia followed by junctional rhythm was seen in two dogs and frequent VPB`s with ventricular tachycardia was observed in one dog at the time of brain death. Hyperdynamic state develops and arrhythmia appears frequently at the time of brain death. Studies on the effects of brain death on myocardium and its pathophysiologic mechanism should be followed in the near future.

  • PDF

Biomechanics of the Elbow (주관절의 생역학)

  • Moon, Jun-Gyu
    • Clinics in Shoulder and Elbow
    • /
    • v.13 no.1
    • /
    • pp.141-145
    • /
    • 2010
  • Purpose: Understanding elbow biomechanics is necessary to understand the pathophysiologic mechanism of elbow injury and to provide a scientific basis for clinical practice. This article provides a summary of key concepts that are relevant to understanding common elbow injuries and their management. Materials and Methods: The biomechanics of the elbow joint can be divided into kinematics, stability and force transmission through the elbow joint. Active and passive stabilizers include bony articular geometry; soft tissues provide joint stability, compression force and motion. Results and Conclusion: Knowledge of elbow biomechanics will help (i) advance surgical procedures and trauma management, (ii) develop new elbow prostheses and (iii) stimulate future research.

A Case Study of Myofascial Trigger Point Syndrome (근막 동통증후군 환자의 4례 -증례보고-)

  • Chung, Nack-Su
    • Journal of Korean Physical Therapy Science
    • /
    • v.2 no.1
    • /
    • pp.413-422
    • /
    • 1995
  • The trigger point phenomenon is an extremely common syndrome in physical therapy room. The symptoms created by these syndromes may be interpreted as originating in discogneic disease, nerve entrapment syndromes, viscerosomatic pain, and certain myalgic pain of unknown etiology. Injuries, viral or bacterial infections, immobilization, psychogenic stress, and other environment factors can preciptate and perpetuate these syndromes, which may occur in any of the voluntary muscles of the human body and thus lead to a multitude of myofascial pain syndromes. Obviously symptomatic treatment can meet with only partial success. Knowledge of the trigger point phenomenon will aid the diagnostician in understanding otherwise in explicable symptom. The trigger point are $2{\sim}5mm$ in diameter, hyperirritable palpable taut in a tissue, when compressed, is locally tender, if sufficiently hypersensitive, give rise to referred pain and tenderness, and sometimes to referred automatic phenomena and distortion of proprioception. The treatment of myofascial trigger point pain syndrome is not difficult once the source of the problem has been determined. Where as many modalities may be used, two of the most effective are spray-and stretch and TP injection. These can be followed by deep massage, specific, manual resistive exercise, and an exercise program which the patient can follow at home. The goal of management is to inactivate the TPs and to restore shortened and stretch resistent muscles to their full range of motion. The purpose of this case study was to know about the pathophysiologic mechanism of the trigger point and will enable to physical therapist to direct his treatment to the real source of trouble.

  • PDF

Nonaneurysmal Subarachnoid Hemorrhage : Rare Complication of Vertebroplasty

  • Lim, Jae-Bum;Park, Joung-Soo;Kim, Ealmaan
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.6
    • /
    • pp.386-389
    • /
    • 2009
  • On rare occasions, percutaneous vertebroplasty (PV) may be associated with adverse spinal and extraspinal events. Subarachnoid hemorrhage (SAH) has not been reported complication following a PV. This is a report of two elderly women with spine compressions who developed idiopathic SAH after injecting polymethylmethacrylate into the thoracolumbar region transcutaneously. PV was performed as an usual manner on prone position under local anesthesia for these patients. During the interventions, two patients complained of a bursting nature of headache and their arterial blood pressure was jumped up. Computed tomography scans revealed symmetric SAH on the both hemispheres and moderate degree of hydrocephalus. Any intracranial vascular abnormalities for their SAH were not evident on modern neuroangiography modalities. One patient received a ventricular shunt surgery, but both fully recovered from the procedure-related SAH. The pathophysiologic mechanism that induce SAH will be discussed, with suggesting the manner that prevent and minimize this rare intracranial complication after PV.

Evaluation of the Biomechanical Characteristics of Ischemic Mitral Regurgitation: Effects of Asymmetric Papillary Muscle Displacement and Annular Dilation (허혈성 승모판막 폐쇄부전의 생체역학적 특성 분석: 비대칭적 유두근 변위와 판륜 확장의 영향)

  • Hong, Woojae;Kim, Hyunggun
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.31-37
    • /
    • 2018
  • Ischemic mitral regurgitation (IMR) is the primary mitral valve (MV) pathology in the aftermath of myocardial infarction as a consequence of regional left ventricular (LV) remodeling. We investigated the effect of asymmetric papillary muscle (PM) displacement and annular dilation on IMR development. Virtual MV modeling was performed to create a normal human MV. Asymmetric PM displacement, asymmetric annular dilation, and the combination of these two pathologic characteristics were modeled. Dynamic finite element evaluation of MV function was performed across the complete cardiac cycle for the normal and three different IMR MV models. While the normal MV demonstrated complete leaflet coaptation, each pathologic MV model clearly revealed deteriorated leaflet coaptation and abnormal stress distributions. The pathologic MV model having both asymmetric PM displacement and annular dilation showed the worst leaflet malcoaptation. Simulation-based biomechanical evaluation of post-ischemic LV remodeling provides an excellent tool to better understand the pathophysiologic mechanism of IMR development.