• Title/Summary/Keyword: Pathogenic bacterial

Search Result 596, Processing Time 0.031 seconds

A Study for Antimicrobial Susceptibility of Wetlands to Eliminate Toilet Bacteria

  • LEE, Woo-Sik;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.3
    • /
    • pp.1-5
    • /
    • 2022
  • Purpose: The purpose of this study is to investigate whether wetland has antimicrobial activity on pathogenic bacteria in the toilet bowl. Research design, data and methodology: Air-dried mud obtained from "Jilmoe Bog" wetland was packed and dissolved in the autoclaved saline. Antimicrobial susceptibility was assessed against three Gram-negative bacteria using disk diffusion method and broth dilution method. Identification of specific bacterium presented in wetland supernatant was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Results: Incubation of three Gram-negative bacteria with wetland supernatant inhibited bacterial growth of the bacteria, otherwise increased prevalence of specific bacterium. It was confirmed that Pseudomonas putida was presented in wetland supernatant. Conclusions: The results presented in this study might provide the possibility to utilize wetland supernatant as a bioremediation of toilet bowl bacteria.

Serotype Variations of Agglutinogen and Fimbriae in the Korean Isolates of Bordetella pertussis (국내 Bordetella pertussis 분리균주에서 Agglutinogen과 Fimbriae 혈청형 변이 분석)

  • Jung, Sang-Oun;Moon, Yu-Mi;Sung, Hwa-Young;Kang, Yeon-Ho;Yu, Jae-Yon
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.221-227
    • /
    • 2008
  • Bordetella pertussis is pathogenic bacteria causing pertussis, a infectious respiratory disease for the infants. The incidence rate of pertussis was significantly decreased after introduction of vaccine. However, increased pertussis cases are recently reported in several countries with high vaccine coverage. One of the inferred reasons is genotype or serotype variation between circulating strains and vaccine strains. Therefore, it is required to confirm the variation status of the isolates by genotype or serotype analysis and the possibility of pertussis outbreak in Korea should be estimated. For this, the serotype variations of the isolates from $1999\sim2006$ were investigated in agglutinogen and fimbriae. As the result, the most frequent serotype in the isolated strains was agglutinogen 1 and fimbriae 2 serotypes. Moreover, serotype transition from vaccine serotypes to non-vaccine serotypes was observed. Especially, the transition pattern of agglutinogen serotype was directed to increase a different type (agg 1) from the vaccine type (agg 1,2). However, in case of fimbriae, the same type (fim 2) with vaccine strain was increased. These results were also observed in other countries with increasing incidence of pertussis. For more predictable results to know increasing possibility of pertussis incidence in Korea, the studies on genetic variations of antigenic determinant genes and prevalence of antibody titer in normal population should be performed in the further.

Effects of Pseudomonas Fluorescens, KR-164 on Plant Pathogenic Microorganisms (식물(植物) 병원성(病源性) 미생물(微生物)에 미치는 Pseudomonas fluorescens, KR-164의 영향(影響))

  • Rhee, Young-Hwan;Kim, Yeong-Yil;Lee, Jae-Pyeong;Kim, Yong-Wong;Kim, Yong-Jae;Lee, Jae-Wha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.53-59
    • /
    • 1990
  • The antagonistic fluorescent pseudomonas, which was isolated from continuous cropping rhizosphere of pepper and cucumber, was identified as Pseudomonas fluorescens (P.f.). For further study, transformant was derived from the isolated P.f. after spontaneous mutation to give antibiotic resistance to nalidixic acid and rifampicin as marked strain. Both P.f. and transformant strains were used for this study and the results obtained were summarized as follows. 1. One of the most effective antagonistic strain, KR164, was selected against F. solani, F. oxysporum, R. solani and this strain was identified and classified as Pseudomonas fluorescens biotype IV. 2. Transformant, KR1641, was derived from strain KR164 and both strains had the same biological and biochemical characteristics. 3, Mycelial lysis and abnormal mycelia of plant pathogenic fungi were microscopically observed after simultaneous culture of fungus and given bacterial strain. 4. The length of chinese cabbage to the autolyzed became longer with given bacterial strain in dark culture. 5. Percentage of germination, number of leaves, length of height, and length of root in chinese cabbage in pot experiment were improved by inoculation of given bacterial strain. 6. The number of given bacterial strain kept generally stable until 34 days after inoculation of itself in pot experiment. Inoculation of given bacterial strain did affect the number of plant disease fungi to be decreased but did not affect the number of other bacteria, Bacillus, in pot experiment.

  • PDF

Analysis of Bacterial Spot Disease in Red Pepper Caused by Increase of CO2 Concentration (CO2 농도 상승 효과에 의한 고추 세균점무늬병 발병 양상 분석)

  • Jang, Jong-Ok;Kim, Byung-Hyuk;Moon, Doo-Gyung;Koh, Sang-wook;Joa, Jae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • An increase in $CO_2$ will affect plant pathogenic microorganisms, the resistance of host plants, and host-pathogen interactions. This study used Capsicum annuum and Xanthomonas euvesicatoria, a pathogenic bacterium of pepper, to investigate the interactions between hosts and pathogens in conditions of increased $CO_2$ concentrations. Our analysis of disease resistance genes under 800 ppm $CO_2$ using quantitative RT-PCR showed that the expression of CaLRR1, CaPIK1, and PR10 decreased, but that of negative regulator WRKY1 increased. Additionally, the disease progress and severity was higher at 800 ppm than 400 ppm $CO_2$. These results will aid in understanding the interaction between red pepper and X. euvesicatoria under increased $CO_2$ concentrations in the future.

Partial denture metal framework may harbor potentially pathogenic bacteria

  • Mengatto, Cristiane Machado;Marchini, Leonardo;de Souza Bernardes, Luciano Angelo;Gomes, Sabrina Carvalho;Silva, Alecsandro Moura;Rizzatti-Barbosa, Celia Marisa
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.468-474
    • /
    • 2015
  • PURPOSE. The aim of this study was to characterize and compare bacterial diversity on the removable partial denture (RPD) framework over time. MATERIALS AND METHODS. This descriptive pilot study included five women who were rehabilitated with free-end mandibular RPD. The biofilm on T-bar clasps were collected 1 week ($t_1$) and 4 months ($t_2$) after the RPD was inserted ($t_0$). Bacterial 16S rDNA was extracted and PCR amplified. Amplicons were cloned; clones were submitted to cycle sequencing, and sequences were compared with GenBank (98% similarity). RESULTS. A total of 180 sequences with more than 499 bp were obtained. Two phylogenetic trees with 84 ($t_1$) and 96 ($t_2$) clones represented the bacteria biofilm at the RPD. About 93% of the obtained phylotypes fell into 25 known species for $t_1$ and 17 for $t_2$, which were grouped in 5 phyla: Firmicutes ($t_1=82%$; $t_2=60%$), Actinobacteria ($t_1=5%$; $t_2=10%$), Bacteroidetes ($t_1=2%$; $t_2=6%$), Proteobacteria ($t_1=10%$; $t_2=15%$) and Fusobacteria ($t_1=1%$; $t_2=8%$). The libraries also include 3 novel phylotypes for $t_1$ and 11 for $t_2$. Library $t_2$ differs from $t_1$ (P=.004); $t_1$ is a subset of the $t_2$ (P=.052). Periodontal pathogens, such as F. nucleatum, were more prevalent in $t_2$. CONCLUSION. The biofilm composition of the RPD metal clasps changed along time after RPD wearing. The RPD framework may act as a reservoir for potentially pathogenic bacteria and the RPD wearers may benefit from regular follow-up visits and strategies on prosthesis-related oral health instructions.

Efficacy of chlorine and lactic acid for reducing pathogenic and spoilage microorganisms on chicken skin (닭고기에서 병원성 및 변질미생물의 감소를 위한 염소와 유산의 병용처리 효과)

  • 이철현;변유성;황보원;강호조
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.4
    • /
    • pp.411-418
    • /
    • 1999
  • In this studies, the ability of chlorine and lactic acid to reduce bacterial population of the pathogenic microorganisms were examined on artificially inoculated chicken skin. About 10$^{5}$ cells of staphylococcus aureus, salmonella enteritidis, listeria monocytogenes and escherichia coli O157:H7 were inoculated in chicken skin. The contaminated samples were washed for 1 min with sodium hypochlorite solutions that contained 2, 5, 10, 20 and 50mg/$\ell$ available chlorine and counted number of the agents. Viable population were no significantly difference (p$\geq$0.05) between concentration of chlorine and strains of the pathogens. In the samples inoculated with pathogens were washed in 20mg/$\ell$ chlorine and then stored at $^5{\circ}C$ for up to 10 days, the initial counts of psychrotrophs and aerobic plate counts were 4.02 to 4.36 log cfu/$\textrm{cm}^2$ and increased slightly in course of time. But 10 days after, the pathogens were a little reduced from 3.66~4.91 log cfu/$\textrm{cm}^2$ to 2.54~4.66 log cfu/$\textrm{cm}^2$. In the case of washed skin with solution of 20mg/$\ell$ chlorine and 0.5% lactic acid then store at $^5{\circ}C$ for up to 10 days, population of psychrotrophs and aerobic plate counts on chicken skin were markedly reduced immediately after treatment, but the numbers of contaminants were slightly increased after 6 and 8 days. Specifically, numbers of St aureus, S enteritidis, L monocytogenes and E coli O157:H7 were reduced to 0.5, 0.4, 0.3 and 1.15 log cfu/$\textrm{cm}^2$ after 10 days of storage, respectively, on aerobic plate counts.

  • PDF

Inactivation of Bacterial Pathogens by Irradiation of Red, Green, Blue and Combined Light-Emitting Diode (LED) (적색, 초록, 청색 및 혼합광 LED 조사의 식중독균 저해 효과)

  • Moon, Jin Seok;Oh, Myung-Min;Joo, Woo Ha;Han, Nam Soo
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.428-432
    • /
    • 2013
  • The antimicrobial properties of Light-Emitting Diode (LED) are an area of increasing interest. The aim of this study was to evaluate the bactericidal effects of blue (peak at 456 nm), green (peak at 518 nm), red (peak at 654 nm) and blue-green combined (blue 456 nm : green 558 nm = 69:31) LED irradiation to pathogenic bacteria. For this, LED equipment providing power density of $10mW/cm^2$ was installed and plates were exposed to 0.9 or $3.0mW/cm^2$ to irradiate bacteria with 3.2 to $259.2mW/cm^2$ of energy density. As a result, blue and combined LED have shown bactericidal effects on Escherichia coli KCTC 1467 and Listeria monocytogenes ATCC 19115 after irradiation of $3.0mW/cm^2$ for 2 and 4 hr, respectively. Staphylococcus aureus KCTC 1916 was inhibited at 518 nm green LED irradiation. However, red LED irradiation showed no inhibitory effect to the other tested strains. Light technology that utilizes the bactericidal properties of blue (at 456 nm) and blue-green(blue 456 nm : green 558 nm = 69:31) combined LED may have potential applications in the food industry sector.

Relationship between the N-acetyl-β-D-glucosaminidase levels and the presence of mastitis pathogens in bovine mastitis milk samples (유우(乳牛) 유방염(乳房炎) 진단(診斷)에 있어서 N-acetyl-β-D-glucosaminidase 치(値)와 분리(分離) 원인균(原因菌)과의 관계(關係))

  • Kang, Byong-kyu;Nam, Hyang-mi;Son, Chang-ho
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.531-537
    • /
    • 1993
  • A study was carried out to define the relationship between the N-acetyl-$\beta$-D-glucosaminidase(NAGase) levels and isolated pathogenic bacteria in 379 quarter fore milk of mastitis suspected samples collected in this clinics. All samples were tested the NAGase, California mastitis test(CMT), Somatic cell count(SCC) and bacterial culture. Except 111 from 379 samples, 268 bacteria-positive quarter fore milk samples were classified into the latent and mastitis infection group by SCC($500,000cells\;per\;m{\ell}$), and the mean NAGase levels($nmol/min/m{\ell}$) of each isolated pathogen in mastitis infection group were Staphylococcus aureus 3.067, Coagulase-negative staphylococci 4.083, Staphylococcus aureus 3.594, Str. uberis 3.513, Str. dysgalactiae 1.640, E coli 4.441 and gram negative rods 4.560, respectively. Most of the relationship between mean SCC and NAGase in each pathogen group were highly significant using a student t test(p<0.05). When the mastitis pathogens were classified into minor(Coagulase-negative staphylococci, Corynebacterium sp.) and major pathogen group(Staphylococcus aureus, Streptococcus agalactiae, Str. uberis, Str. dysgalactiae, gram negative rods), the NAGase levels were higher at major than minor pathogen group. On the other hand, when the mastitis milk samples were classified by SCC($500,000cells\;per\;m{\ell}$) and by the presence of pathogen(IDF scheme), the NAGase levels were also higher at the mastitis than latent infection. The possibility of combining SCC and NAGase data in order to give the more difinitive diagnosis is discussed.

  • PDF

Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases

  • Ji, Seung Hyun;Paul, Narayan Chandra;Deng, Jian Xin;Kim, Young Sook;Yun, Bong-Sik;Yu, Seung Hun
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.234-242
    • /
    • 2013
  • A total of 62 bacterial isolates were obtained from Gomsohang mud flat, Mohang mud flat, and Jeju Island, Republic of Korea. Among them, the isolate CNU114001 showed significant antagonistic activity against pathogenic fungi by dual culture method. The isolate CNU114001 was identified as Bacillus amyloliquefaciens by morphological observation and molecular data analysis, including 16SrDNA and gyraseA (gyrA) gene sequences. Antifungal substances of the isolate were extracted and purified by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. The heat and UV ray stable compound was identified as iturin, a lipopeptide (LP). The isolate CNU114001 showed broad spectrum activity against 12 phytopathogenic fungi by dual culture method. The semi purified compound significantly inhibits the mycelial growth of pathogenic fungi (Alternaria panax, Botrytis cinera, Colletotrichum orbiculare, Penicillium digitatum, Pyricularia grisea and Sclerotinia sclerotiorum) at 200 ppm concentration. Spore germ tube elongation of Botrytis cinerea was inhibited by culture filtrate of the isolate. Crude antifungal substance showed antagonistic activity against cucumber scleotiorum rot in laboratory, and showed antagonistic activity against tomato gray mold, cucumber, and pumpkin powdery mildew in greenhouse condition.

Changes in the Microbiological Characteristics of Korean Native Cattle (Hanwoo) Beef Exposed to Ultraviolet (UV) Irradiation Prior to Refrigeration

  • Kim, Hyun-Jung;Lee, Yong-Jae;Eun, Jong-Bang
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.815-821
    • /
    • 2014
  • The effects of ultraviolet (UV) radiation were investigated with regards to the microbial growth inhibitory effect on the shelf life of Korean native cattle (Hanwoo) beef prior to refrigerated storage. The Hanwoo samples were exposed to UV radiation ($4.5mW/cm^2$) for 0, 5, 10, 15, and 20 min. The UV-irradiated beef that was exposed for 20 min showed significantly reduced mesophilic and psychrotrophic bacterial populations to the extent of approximately 3 log cycles, as compared to that of non-irradiated beef. About 2.5 Log CFU/g of mesophilic bacteria were different compared with UV-irradiated and non-irradiated meat. UV irradiation showed the most significant growth inhibition effects on mesophilic and psychrotrophic bacteria. Coliform and Gram-negative bacteria were also reduced by 1 log cycle. The population of L. monocytogenes, S. Typhimurium, and E. coli O157:H7 decreased significantly to 53.33, 39.68, and 45.76% after 10 min of UV irradiation. They decreased significantly to 84.64, 80.76, and 84.12%, respectively, after 20 min of UV irradiation. The results show that UV irradiation time and the inhibitory effect were proportional. These results verified that UV radiation prior to refrigeration can effectively reduce the number of pathogenic bacteria on the surface of meat and improve the meat's microbial safety.