• Title/Summary/Keyword: Path travel time prediction

Search Result 13, Processing Time 0.02 seconds

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF

Development of Traffic Accident Index Considering Driving Behavior of a Data Based (데이터 기반의 도로구간별 운전자의 통행행태를 고려한 교통사고지표 개발)

  • LEE, Soongbong;CHANG, Hyunho;CHEON, Seunghoon;BAEK, Seungkirl;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Highway is mainly in charge of middle-long distance of vehicular travel. Trip length has shown a growing trend due to increased commute distances by the relocation of public agencies. For this reason, the proportion of driver-driven accidents, caused by their fatigue or sleepiness, are very high on highways. However, existing studies related to accident prediction have mainly considered external factors, such as road conditions, environmental factors and vehicle factors, without driving behavior. In this study, we suggested an accident index (FDR, Fatigued Driving Rate) based on traffic behavior using large-scale Car Navigation path data, and exlpored the relationship between FDR and traffic accidents. As a result, FDR and traffic accidents showed a high correlation. This confirmed the need for a paradigm shift (from facilities to travel behavior) in traffic accident prediction studies. FDR proposed in this study will be utilized in a variety of fields. For example, in providing information to prevent traffic accidents (sleepiness, reckless driving, etc) in advance, utilization of core technologies in highway safety diagnostics, selection of priority location of rest areas and shelter, and selection of attraction methods (rumble strips, grooving) for attention for fatigued sections.

The System for Predicting the Traffic Flow with the Real-time Traffic Information (실시간 교통 정보를 이용한 교통 혼잡 예측 시스템)

  • Yu Young-Jung;Cho Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1312-1318
    • /
    • 2006
  • One of the common services of telematics is the car navigation that finds the shortest path from source to target. Until now, some routing algorithms of the car navigation do not consider the real-time traffic information and use the static shortest path algorithm. In this paper, we prosed the method to predict the traffic flow in the future. This prediction combines two methods. The former is an accumulated speed pattern, which means the analysis results for all past speeds of each road by classfying the same day and the same time inteval. The latter is the Kalman filter. We predicted the traffic flows of each segment by combining the two methods. By experiment, we showed our algorithm gave better precise predicition than only using accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.