• Title/Summary/Keyword: Path search

Search Result 670, Processing Time 0.022 seconds

The Influence Relationship among Consumers' Characteristics, Information Search, and Purchase Decision in On/Offline Retailing Environment (온/오프라인 유통환경에서 소비자특성, 정보탐색, 구매결정 간 영향관계에 관한 연구)

  • Chae, Jin Mie
    • Fashion & Textile Research Journal
    • /
    • v.22 no.3
    • /
    • pp.323-334
    • /
    • 2020
  • This study analyzed the effects of consumers' characteristic variables on information search and purchase decisions in a decision-making process that validated the path model in purchasing apparel products. In constructing a structural equation model using AMOS 19.0., the variables including enjoyment pursuit, price pursuit, product involvement and product risk were selected as consumers' characteristic variables affecting the stage of information search. A questionnaire was distributed to consumers over 20 years old who purchased apparel products using offline and online channels within one year; consequently, we were able to analyze 468 effective data. The results were as follows. First, the path model of this research proved to be the appropriate model explaining the effects of consumers' characteristic variables on the stage of purchase decision-making. Second, enjoyment pursuit had a significant positive influence on offline information search; in addition, price pursuit and product risk affected the online information search significantly. Product involvement affected online information search as well as offline information search. Third, the offline information search affected offline purchase and online information search affected online purchase. However, consumer's channel switching behavior between the stage of information search and the stage of purchase decision was not proven. The findings suggest that companies need to develop distribution strategies according to consumers' characteristic factors that effect consumer's purchase decision-making.

Collision Free Path Planing of Articulated Manipulator for Remote Maintenance Using Sequential Search Method (원격 유지보수용 다관절 조작기의 순차 탐색에 의한 장애물 회피 경로계획)

  • 이종열;송태길;김성현;박병석;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.519-522
    • /
    • 1997
  • In this study, the collision free path planning method of the articulated manipulator using sequential search is proposed. This method is to find the joint path of the manipulator with many degrees of freedom from the distal joint to the proximal one. To do this, the initial work space of the gantry manipulator, which is a remote maintenance equipment of the radioactive environment, is defined from the condition that the distal joint configuration is determined by the posture of maintenance. Then, 2-dimensional configuration space with the obstacle area is represented and the collision free path of manipulator is searched in the configuration space. And, this method is verified using the graphic simulation in virtual workcell for the spent fuel disassembling processes. The result of this study can be effectively used in implementing the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

The Effect of Personalized Product Recommendation Service of Online Fashion Shopping Mall on Service Use Behaviors through Cognitive Attitude and Emotional Attachment (온라인 패션쇼핑몰의 개인 상품 추천서비스가 인지적 태도와 감정적 애착을 통해 서비스 사용행동에 미치는 영향)

  • Choi, Mi Young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.5
    • /
    • pp.586-597
    • /
    • 2021
  • Personalized product recommendation service is receiving attention as a new marketing strategy while supporting consumer information search and purchasing decisions. This study attempted to verify the effect of self-reference on service use behavior through the dual path of cognitive attitude and emotional attachment. Using convenience sampling, an online survey was conducted with 324 women who were in their 20s and 30s. After collecting and compiling the survey data, the reliability and validity of variables constituting the conceptual research model were verified through confirmatory factor analysis using AMOS 22.0. Next, the significance of sequentially mediated pathways was verified using Process 3.5 Model 80. The results showed that self-referencing not only significantly affects service use intention by simply mediating cognitive attitudes but also sequentially mediates cognitive attitudes and additional information search. Furthermore, self-referencing was significant as an indirect path to service use intention by mediating additional information search. However, in the path mediated by emotional attachment, self-referencing was considered as a simple mediated path leading to service usage intention. These results indicate a dual path in the psychological mechanism, through cognitive and emotional evaluation, that prompts consumer behavioral responses to the personalized product information provided in the shopping process.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

A Point-to-Point Shortest Path Search Algorithm in an Undirected Graph Using Minimum Spanning Tree (최소신장트리를 이용한 무방향 그래프의 점대점 최단경로 탐색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.103-111
    • /
    • 2014
  • This paper proposes a modified algorithm that improves on Dijkstra's algorithm by applying it to purely two-way traffic paths, given that a road where bi-directional traffic is made possible shall be considered as an undirected graph. Dijkstra's algorithm is the most generally utilized form of shortest-path search mechanism in GPS navigation system. However, it requires a large amount of memory for execution for it selects the shortest path by calculating distance between the starting node and every other node in a given directed graph. Dijkstra's algorithm, therefore, may occasionally fail to provide real-time information on the shortest path. To rectify the aforementioned shortcomings of Dijkstra's algorithm, the proposed algorithm creates conditions favorable to the undirected graph. It firstly selects the shortest path from all path vertices except for the starting and destination vertices. It later chooses all vertex-outgoing edges that coincide with the shortest path setting edges so as to simultaneously explore various vertices. When tested on 9 different undirected graphs, the proposed algorithm has not only successfully found the shortest path in all, but did so by reducing the time by 60% and requiring less memory.

Multi-Stage Path Planning Based on Shape Reasoning and Geometric Search (형상 추론과 기하학적 검색 기반의 다단계 경로 계획)

  • Hwang, Yong-K.;Cho, Kyoung-R.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.493-498
    • /
    • 2004
  • A novel approach for path planning of a polygonal robot is presented. Traditional path planners perform extensive geometric searching to find the optimal path or to prove that there is no solution. The computation required to prove that there is no solution is equivalent to exhaustive search of the motion space, which is typically very expensive. Humans seems to use a set of several different path planning strategies to analyse the situation of the obstacles in the environment, and quickly recognize whether the path-planning problem is easy to solve, hard to solve or has no solution. This human path-planning strategies have motivated the development of the presented algorithm that combines qualitative shape reasoning and exhaustive geometric searching to speed up the path planning process. It has three planning stages consisting of identification of no-solution cases based on an enclosure test, a qualitative reasoning stage, and finally a complete search algorithm in case the previous two stages cannot determine of the existence of a solution path.

A Path Fault Avoided RPAODV Routing in Ad Hoc Networks (Ad Hoc 네트워크의 경로손실 회피기반 RPAODV 라우팅)

  • Wu Mary;Kim Youngrak;Kim Chonggun
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.879-888
    • /
    • 2004
  • Ad Node transmits packets to a destination node using routing function of intermediate nodes on the path in Ad Hoc networks. When the link to a next hop node in a path is broken due to the next hop node's mobility, a new route search process is required for continuing packets transmission. The node which recognizes link fault starts a local route recovery or the source node starts a new route search in the on demand routing protocol AODV. In this case, the new route search or the local route search brings packet delays and bad QoSs by packet delay. We propose RPAODV that the node predicts a link fault selects a possible node in neighbor nodes as a new next hop node for the path. The proposed protocol can avoid path faults and improve QoS.

Search Space Reduction by Vertical-Decomposition of a Grid Map (그리드 맵의 수직 분할에 의한 탐색 공간 축소)

  • Jung, Yewon;Lee, Juyoung;Yu, Kyeonah
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1026-1033
    • /
    • 2016
  • Path-finding on a grid map is a problem generally addressed in the fields of robotics, intelligent agents, and computer games. As technology advances, virtual game worlds tend to be represented more accurately and more realistically, resulting in an excessive increase in the number of grid tiles and in path-search time. In this study, we propose a path-finding algorithm that allows a prompt response to real-time queries by constructing a reduced state space and by precomputing all possible paths in an offline preprocessing stage. In the preprocessing stage, we vertically decompose free space on the grid map, construct a connectivity graph where nodes are the decomposed regions, and store paths between all pairs of nodes in matrix form. In the real-time query stage, we first find the nodes containing the query points and then retrieve the corresponding stored path. The proposed method is simulated for a set of maps that has been used as a benchmark for grid-based path finding. The simulation results show that the state space and the search time decrease significantly.

A new hybrid optimization algorithm based on path projection

  • Gharebaghi, Saeed Asil;Ardalan Asl, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.707-719
    • /
    • 2018
  • In this article, a new method is introduced to improve the local search capability of meta-heuristic algorithms using the projection of the path on the border of constraints. In a mathematical point of view, the Gradient Projection Method is applied through a new approach, while the imposed limitations are removed. Accordingly, the gradient vector is replaced with a new meta-heuristic based vector. Besides, the active constraint identification algorithm, and the projection method are changed into less complex approaches. As a result, if a constraint is violated by an agent, a new path will be suggested to correct the direction of the agent's movement. The presented procedure includes three main steps: (1) the identification of the active constraint, (2) the neighboring point determination, and (3) the new direction and step length. Moreover, this method can be applied to some meta-heuristic algorithms. It increases the chance of convergence in the final phase of the search process, especially when the number of the violations of the constraints increases. The method is applied jointly with the authors' newly developed meta-heuristic algorithm, entitled Star Graph. The capability of the resulted hybrid method is examined using the optimal design of truss and frame structures. Eventually, the comparison of the results with other meta-heuristics of the literature shows that the hybrid method is successful in the global as well as local search.

A Combined Heuristic Algorithm for Preference-based Shortest Path Search (선호도 기반 최단경로 탐색을 위한 휴리스틱 융합 알고리즘)

  • Ok, Seung-Ho;Ahn, Jin-Ho;Kang, Sung-Ho;Moon, Byung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.74-84
    • /
    • 2010
  • In this paper, we propose a preference-based shortest path algorithm which is combined with Ant Colony Optimization (ACO) and A* heuristic algorithm. In recent years, with the development of ITS (Intelligent Transportation Systems), there has been a resurgence of interest in a shortest path search algorithm for use in car navigation systems. Most of the shortest path search algorithms such as Dijkstra and A* aim at finding the distance or time shortest paths. However, the shortest path is not always an optimum path for the drivers who prefer choosing a less short, but more reliable or flexible path. For this reason, we propose a preference-based shortest path search algorithm which uses the properties of the links of the map. The preferences of the links are specified by the user of the car navigation system. The proposed algorithm was implemented in C and experiments were performed upon the map that includes 64 nodes with 118 links. The experimental results show that the proposed algorithm is suitable to find preference-based shortest paths as well as distance shortest paths.