• Title/Summary/Keyword: Path navigation

Search Result 686, Processing Time 0.023 seconds

A Parallel Approach to Navigation in Cities using Reconfigurable Mesh

  • El-Boghdadi, Hatem M.;Noor, Fazal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • The subject of navigation has drawn a large interest in the last few years. Navigation problem (or path planning) finds the path between two points, source location and destination location. In smart cities, solving navigation problem is essential to all residents and visitors of such cities to guide them to move easily between locations. Also, the navigation problem is very important in case of moving robots that move around the city or part of it to get some certain tasks done such as delivering packages, delivering food, etc. In either case, solution to the navigation is essential. The core to navigation systems is the navigation algorithms they employ. Navigation algorithms can be classified into navigation algorithms that depend on maps and navigation without the use of maps. The map contains all available routes and its directions. In this proposal, we consider the first class. In this paper, we are interested in getting path planning solutions very fast. In doing so, we employ a parallel platform, Reconfigurable mesh (R-Mesh), to compute the path from source location to destination location. R-Mesh is a parallel platform that has very fast solutions to many problems and can be deployed in moving vehicles and moving robots. This paper presents two algorithms for path planning. The first assumes maps with linear streets. The second considers maps with branching streets. In both algorithms, the quality of the path is evaluated in terms of the length of the path and the number of turns in the path.

A Path Navigation Algorithm for an Autonomous Robot Vehicle by Sensor Scanning (센서 스캐닝에 의한 자율주행로봇의 경로주행 알고리즘)

  • Park, Dong-Jin;An, Jeong-U;Han, Chang-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, a path navigation algorithm through use of a sensor platform is proposed. The sensor platform is composed of two electric motors which make panning and tilting motions. An algorithm for computing a real path and an obstacle length is developed by using a scanning method that controls rotation of the sensors on the platform. An Autonomous Robot Vehicle(ARV) can perceive the given path by adapting this algorithm. A sensor scanning method is applied to the sensor platform for using small numbers of sensor. The path navigation algorithm is composed of two parts. One is to perceive a path pattern, the other is used to avoid an obstacle. An optimal controller is designed for tracking the reference path which is generated by perceiving the path pattern. The ARV is operated using the optimal controller and the path navigation algorithm. Based on the results of actual experiments, this algorithm for an ARV proved sufficient for path navigation by small number of sensors and for a low cost controller by using the sensor platform with a scanning method.

A Study on New Map Construction and Path Planning Method for Mobile Robot Navigation (이동 로봇의 주행을 위한 새로운 지도 구성 방법 및 경로 계획에 관한 연구)

  • O, Jun-Seop;Park, Jin-Bae;Choe, Yun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.9
    • /
    • pp.538-545
    • /
    • 2000
  • In this paper we proposed a new map construction and path planning method for mobile robot. In our proposed method first we introduced triangular representation map that mobile robot can navigate through shorter path and flexible motion instead of grid representation map for mobile robot navigation. method in which robot can navigate complete space through as short path as possible in unknown environment is proposed. Finally we proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed new path planning method in a quadtree representation map. To evaluate the performance of our proposed triangular representation map it was compared with the existing distance transform path planning method. And we considered complete coverage navigation and new path planning method through several examples.

  • PDF

High-Speed Path Planning of a Mobile Robot Using Gradient Method with Topological Information (위상정보를 갖는 구배법에 기반한 이동로봇의 고속 경로계획)

  • Ham Jong-Gyu;Chung Woo-Jin;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.444-449
    • /
    • 2006
  • Path planning is a key element in navigation of a mobile robot. Several algorithms such as a gradient method have been successfully implemented so for. Although the gradient method can provide the global optimal path, it computes the navigation function over the whole environment at all times, which result in high computational cost. This paper proposes a high-speed path planning scheme, called a gradient method with topological information, in which the search space for computation of a navigation function can be remarkably reduced by exploiting the characteristics of the topological information reflecting the topology of the navigation path. The computing time of the gradient method with topological information can therefore be significantly decreased without losing the global optimality. This reduced path update period allows the mobile robot to find a collision-free path even in the dynamic environment.

Path planning for mobile robot using genetic algorithm (유전 알고리즘을 이용한 이동로봇의 경로 계획)

  • 곽한택;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1189-1192
    • /
    • 1996
  • Navigation is a science of directing a mobile robot as traversing the environment. The purpose of navigation is to reach a destination without getting lost or crashing into any obstacles. In this paper, we use a genetic algorithm for navigation. Genetic algorithm searches for path in the entire, continuous free space and unifies global path planning and local path planning. It is the efficient and effective method when compared with navigators using traditional approaches.

  • PDF

A Path Generation Algorithm for Obstacle Avoidance in Waypoint Navigation of Unmanned Ground Vehicle (무인자동차의 경로점 주행 시 장애물 회피를 위한 경로생성 알고리즘)

  • Im, Jun-Hyuck;You, Seung-Hwan;Jee, Gyu-In;Lee, Dal-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.843-850
    • /
    • 2011
  • In this paper, an effective path generation algorithm for obstacle avoidance producing small amount of steering action as possible is proposed. The proposed path generation algorithm can reduce unnecessary steering because of the small lateral changes in generated waypoints when UGV (Unmanned Ground Vehicle) encounters obstacles during its waypoint navigation. To verify this, the proposed algorithm and $A^*$ algorithm are analyzed through the simulation. The proposed algorithm shows good performance in terms of lateral changes in the generated waypoint, steering changes of the vehicle while driving and execution speed of the algorithm. Especially, due to the fast execution speed of the algorithm, the obstacles that encounter suddenly in front of the vehicle within short range can be avoided. This algorithm consider the waypoint navigation only. Therefore, in certain situations, the algorithm may generate the wrong path. In this case, a general path generation algorithm like $A^*$ is used instead. However, these special cases happen very rare during the vehicle waypoint navigation, so the proposed algorithm can be applied to most of the waypoint navigation for the unmanned ground vehicle.

Functionally Classified Framework based Navigation System for Indoor Service Robots (기능별로 분류된 프레임워크에 기반한 실내용 이동로봇의 주행시스템)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.720-727
    • /
    • 2009
  • This paper proposes a new integrated navigation system for a mobile robot in indoor environments. This system consists of five frameworks which are classified by function. This architecture can make the navigation system scalable and flexible. The robot can recover from exceptional situations, such as environmental changes, failure of entering the narrow path, and path occupation by moving objects, using the exception recovery framework. The environmental change can be dealt with using the probabilistic approach, and the problems with the narrow path and path occupation are solved using the ray casting algorithm and the Bayesian update rule. The proposed navigation system was successfully applied to several robots and operated in various environments. Experimental results showed good performance in that the exception recovery framework significantly increased the success rate of navigation. The system architecture proposed in this paper can reduce the time for developing robot applications through its reusability and changeability.

Integrated Path Planning and Collision Avoidance for an Omni-directional Mobile Robot

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.210-217
    • /
    • 2010
  • This paper presents integrated path planning and collision avoidance for an omni-directional mobile robot. In this scheme, the autonomous mobile robot finds the shortest path by the descendent gradient of a navigation function to reach a goal. In doing so, the robot based on the proposed approach attempts to overcome some of the typical problems that may pose to the conventional robot navigation. In particular, this paper presents a set of analysis for an omni-directional mobile robot to avoid trapped situations for two representative scenarios: 1) Ushaped deep narrow obstacle and 2) narrow passage problem between two obstacles. The proposed navigation scheme eliminates the nonfeasible area for the two cases by the help of the descendent gradient of the navigation function and the characteristics of an omni-directional mobile robot. The simulation results show that the proposed navigation scheme can effectively construct a path-planning system in the capability of reaching a goal and avoiding obstacles despite possible trapped situations under uncertain world knowledge.

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.