• 제목/요약/키워드: Path finding technique

검색결과 61건 처리시간 0.024초

네비게이션 시스템에서의 최단경로 탐색 기법 비교 (Compare with Shotest Path Algorithm in Navigation System)

  • 박승용;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.27-28
    • /
    • 2010
  • Finding shortest path technique running time differs depending on applying of the algorithm and data, and also used a lot of difference in effectiveness depending on the environment occurs. Therefore, the algorithm and environment based on this study, the relationship between optimal solutions and compare running time.

  • PDF

IC 테스트 핸들러의 최적분류 알고리즘 개발 (An Optimal Sorting Algorithm for Auto IC Test Handler)

  • 김종관;최동훈
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2606-2615
    • /
    • 1994
  • Sorting time is one of the most important issues for auto IC test handling systems. In actual system, because of too much path, reducing the computing time for finding a sorting path is the key way to enhancing the system performance. The exhaustive path search technique can not be used for real systems. This paper proposes heuristic sorting algorithm to find the minimal sorting time. The suggested algorithm is basically based on the best-first search technique and multi-level search technique. The results are close to the optimal solutions and computing time is greately reduced also. Therefore the proposed algorthm can be effectively used for real-time sorting process in auto IC test handling systems.

공간적 패턴클러스터링을 위한 새로운 접근방법의 제안 : 슈퍼마켓고객의 동선분석 (A New Approach to Spatial Pattern Clustering based on Longest Common Subsequence with application to a Grocery)

  • 정인철;권영식
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.447-456
    • /
    • 2011
  • Identifying the major moving patterns of shoppers' movements in the selling floor has been a longstanding issue in the retailing industry. With the advent of RFID technology, it has been easier to collect the moving data for a individual shopper's movement. Most of the previous studies used the traditional clustering technique to identify the major moving pattern of customers. However, in using clustering technique, due to the spatial constraint (aisle layout or other physical obstructions in the store), standard clustering methods are not feasible for moving data like shopping path should be adjusted for the analysis in advance, which is time-consuming and causes data distortion. To alleviate this problems, we propose a new approach to spatial pattern clustering based on longest common subsequence (LCSS). Experimental results using the real data obtained from a grocery in Seoul show that the proposed method performs well in finding the hot spot and dead spot as well as in finding the major path patterns of customer movements.

방향전환 최소화 기법을 적용한 계층 경로 탐색 알고리즘 (A hierarchical path finding algorithm with the technique of minimizing the number of turn)

  • 문대진;조대수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.323-326
    • /
    • 2007
  • 실제 도로에서 목적지까지 이동할 때, 일반적으로 직선 경로가 방향전환이 잦은 경로보다 이동시간이 적게 걸린다. 왜냐하면, 방향을 바꾸기 위해서는 속도를 줄여야 하기 때문이다. 또한, 교차로에서 좌회전(우회전, U턴)을 하려면 직진의 경우보다 신호 대기 시간이 길 가능성이 높다. 이 논문에서는 방향전환을 줄이기 위해서 기존의 경로 탐색 알고리즘을 개선한 알고리즘을 제안한다. 제안하는 알고리즘은 기본적으로 기존의 계층적 $A^*$ 알고리즘을 따르지만, 간선에 대한 가중치 부여 방법이 다르다. 즉, 방향이 바뀌는 간선에 대해서 가중치를 낮게 주어 전체 경로의 직진성을 유지한다.

  • PDF

비행체의 경로최적화 (Path Optimization for Aircraft)

  • 김세헌;염건
    • 한국경영과학회지
    • /
    • 제8권1호
    • /
    • pp.11-18
    • /
    • 1983
  • This paper shows a new efficient solution method of finding an optimal path for a cruise missile or aircraft to a target which has the maximal survivability and penetration effectiveness against sophisticated defenses and over varied terrain. We first generate a grid structure over the terrain, to construct a network. Since our network usually has about 10,000 nodes, the conventional Dijkstra algorithm takes too much computational time in its searching process for a new permanent node. Our method utilizes the Hashing technique to reduce the computational time of the searching process. Extensive computational results are presented.

  • PDF

격자위상혼합지도방식과 적응제어 알고리즘을 이용한 SLAM 성능 향상 (Increasing the SLAM performance by integrating the grid-topology based hybrid map and the adaptive control method)

  • 김수현;양태규
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1605-1614
    • /
    • 2009
  • The technique of simultaneous localization and mapping is the most important research topic in mobile robotics. In the process of building a map in its available memory, the robot memorizes environmental information on the plane of grid or topology. Several approaches about this technique have been presented so far, but most of them use mapping technique as either grid-based map or topology-based map. In this paper we propose a frame of solving the SLAM problem of linking map covering, map building, localizing, path finding and obstacle avoiding in an automatic way. Some algorithms integrating grid and topology map are considered and this make the SLAM performance faster and more stable. The proposed scheme uses an occupancy grid map in representing the environment and then formulate topological information in path finding by A${\ast}$ algorithm. The mapping process is shown and the shortest path is decided on grid based map. Then topological information such as direction, distance is calculated on simulator program then transmitted to robot hardware devices. The localization process and the dynamic obstacle avoidance can be accomplished by topological information on grid map. While mapping and moving, pose of the robot is adjusted for correct localization by implementing additional pixel based image layer and tracking some features. A laser range finer and electronic compass systems are implemented on the mobile robot and DC geared motor wheels are individually controlled by the adaptive PD control method. Simulations and experimental results show its performance and efficiency of the proposed scheme are increased.

Distance Measurement Using the Kinect Sensor with Neuro-image Processing

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.379-383
    • /
    • 2015
  • This paper presents an approach to detect object distance with the use of the recently developed low-cost Kinect sensor. The technique is based on Kinect color depth-image processing and can be used to design various computer-vision applications, such as object recognition, video surveillance, and autonomous path finding. The proposed technique uses keypoint feature detection in the Kinect depth image and advantages of depth pixels to directly obtain the feature distance in the depth images. This highly reduces the computational overhead and obtains the pixel distance in the Kinect captured images.

K-최단경로문제를 위한 MPS 방법의 효율적인 구현 (An Efficient Implementation of the MPS algorithm for the K-Shortest Path Problem)

  • 도승용
    • 한국국방경영분석학회지
    • /
    • 제25권1호
    • /
    • pp.29-36
    • /
    • 1999
  • In this paper, we are concerned with the K-shortest loopless path problem. The MPS algorithm, recently proposed by Martins et al., finds paths efficiently because it solves the shortest path problem only one time unlike other algorithms. But its computational complexity has not been known yet. We propose a few techniques by which the MPS algorithm can be implemented efficiently. First, we use min-heap data structure for the storage of candidate paths in order to reduce searching time for finding minimum distance path. Second, we prevent the eliminated paths from reentering in the list of candidate paths by lower bounding technique. Finally, we choose the source mode as a deviation node, by which selection time for the deviation node is reduced and the performance is improved in spite of the increase of the total number of candidate paths.

  • PDF

시각을 이용한 이동 로봇의 강건한 경로선 추종 주행 (Vision-Based Mobile Robot Navigation by Robust Path Line Tracking)

  • 손민혁;도용태
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.178-186
    • /
    • 2011
  • Line tracking is a well defined method of mobile robot navigation. It is simple in concept, technically easy to implement, and already employed in many industrial sites. Among several different line tracking methods, magnetic sensing is widely used in practice. In comparison, vision-based tracking is less popular due mainly to its sensitivity to surrounding conditions such as brightness and floor characteristics although vision is the most powerful robotic sensing capability. In this paper, a vision-based robust path line detection technique is proposed for the navigation of a mobile robot assuming uncontrollable surrounding conditions. The technique proposed has four processing steps; color space transformation, pixel-level line sensing, block-level line sensing, and robot navigation control. This technique effectively uses hue and saturation color values in the line sensing so to be insensitive to the brightness variation. Line finding in block-level makes not only the technique immune from the error of line pixel detection but also the robot control easy. The proposed technique was tested with a real mobile robot and proved its effectiveness.

A Low-Cost Approach for Path Programming of Terrestrial Drones on a Construction Site

  • Kim, Jeffrey;Craig, James
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.319-327
    • /
    • 2022
  • Robots for construction sites, although not deeply widespread, are finding applications in the duties of project monitoring, material movement, documentation, security, and simple repetitive construction-related tasks. A significant shortcoming in the use of robots is the complexity involved in programming and re-programming an automation routine. Robotic programming is not an expected skill set of the traditional construction industry professional. Therefore, this research seeks to deliver a low-cost approach toward re-programming that does not involve a programmer's skill set. The researchers in this study examined an approach toward programming a terrestrial-based drone so that it follows a taped path. By doing so, if an alternative path is required, programmers would not be needed to re-program any part of the automated routine. Changing the path of the drone simply requires removing the tape and placing a different path - ideally simplifying the process and quickly allowing practitioners to implement a new automated routine. Python programming scripts were used with a DJI Robomaster EP Core drone, and a terrain navigation assessment was conducted. The study examined the pass/fail rates for a series of trial run over different terrains. The analysis of this data along with video recording for each trial run allowed the researchers to conclude that the accuracy of the tape follow technique was predictable on each of the terrain surfaces. The accuracy and predictability inform a non-coding construction practitioner of the optimal placement of the taped path. This paper further presents limitations and suggestions for some possible extended research options for this study.

  • PDF