• 제목/요약/키워드: Path Space

Search Result 1,022, Processing Time 0.023 seconds

A Study on Characteristic of Visitor's Behavior and Circulation Path Type in Art Museum Exhibition Space (미술관 단위전시실의 경로선택 유형과 관람행동 특성에 관한 고찰)

  • Choi, Jun-Hyuck
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • This study attempts to understand the arrangement and spatial requisites of art pieces by materializing the visitors' path of movement in the exhibition space, as well as researching their behavior. The purpose of the research is to the guideline for planning the exhibition layout and visitors' circulation can be derived in order to correspond to the visitors' characteristic of movement and circulation-path choice. Although such guideline may have limited use, it is still significant enough to be studied. Taking three Korean art galleries as the subjects of research, this study observes the arrangement of art pieces, movement path of visitors, characteristics of the visitors' behavior and the duration time a visitor takes to view an art piece without moving around in order to understand the arrangement and spatial requisites of art pieces which correspond to the visitors' behavior. The following results have been drawn in this research and analysis; First, when there is an island type exhibition other than the ordinary on-the-wall display in the exhibition space, the visitors' choice of path changes. In short, an island type exhibition seems to be a factor that changes the visitors' path. Second, in the entrance of an exhibition space unit, most of the visitors seem to choose a path which moves counter-clockwise. Third, it is considered that well-known art pieces or art pieces with a big size shall not be displayed on the comer of the exhibition room.

Collision-Free Path Planning for a Redundant Manipulator Based on PRM and Potential Field Methods (PRM과 포텐셜 필드 기법에 기반한 다자유도 머니퓰레이터의 충돌회피 경로계획)

  • Park, Jung-Jun;Kim, Hwi-Su;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.362-367
    • /
    • 2011
  • The collision-free path of a manipulator should be regenerated in the real time to achieve collision safety when obstacles or humans come into the workspace of the manipulator. A probabilistic roadmap (PRM) method, one of the popular path planning schemes for a manipulator, can find a collision-free path by connecting the start and goal poses through the roadmap constructed by drawing random nodes in the free configuration space. The path planning method based on the configuration space shows robust performance for static environments which can be converted into the off-line processing. However, since this method spends considerable time on converting dynamic obstacles into the configuration space, it is not appropriate for real-time generation of a collision-free path. On the other hand, the method based on the workspace can provide fast response even for dynamic environments because it does not need the conversion into the configuration space. In this paper, we propose an efficient real-time path planning by combining the PRM and the potential field methods to cope with static and dynamic environments. The PRM can generate a collision-free path and the potential field method can determine the configuration of the manipulator. A series of experiments show that the proposed path planning method can provide robust performance for various obstacles.

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

Development of the Multi-Path Finding Model Using Kalman Filter and Space Syntax based on GIS (Kalman Filter와 Space Syntax를 이용한 GIS 기반 다중경로제공 시스템 개발)

  • Ryu, Seung-Kyu;Lee, Seung-Jae;Ahn, Woo-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.149-158
    • /
    • 2005
  • The object of this paper is to develop the shortest path algorithm. The existing shortest path algorithm models are developed while considering travel time and travel distance. A few problems occur in these shortest path algorithm models, which have paid no regard to cognition of users, such as when user who doesn't have complete information about the trip meets a strange road or when the route searched from the shortest path algorithm model is not commonly used by users in real network. This paper develops a shortest path algorithm model to provide ideal route that many people actually prefer. In order to provide the ideal shortest path with the consideration of travel time, travel distance and road cognition, travel time is predicted by using Kalman filtering and travel distance is predicted by using GIS attributions. The road cognition is considered by using space data of GIS. Optimal routes provided from this paper are shortest distance path, shortest time path, shortest path considering distance and cognition and shortest path considering time and cognition.

Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles (복수의 동적 장애물에 대한 이동로봇의 최적경로설계)

  • Kim, Dae-Gwang;Kang, Dong-Joong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF

Collision-free path planning for two cooperating robot manipulators using reduced dimensional configuration space (축소 차원 형상 공간을 이용한 협조작업 두 팔 로봇의 충돌 회피 경로 계획)

  • 최승문;이석원;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.904-907
    • /
    • 1996
  • In this paper, we propose an efficient collision-free path planning method of two cooperating robot manipulators grasping a common object rigidly. For given two robots and an object, the procedure is described which constructs the reduced dimensional configuration space by the kinematic analysis of two cooperating robot manipulators. A path planning algorithm without explicit representation of configuration obstacles is also described. The primary steps of the algorithm is as follows. First, we compute a graph which represents the skeleton of the free configuration space. Second, a connection between an initial and a goal configuration to the graph is searched to find a collision-free path.

  • PDF

An Analysis of the Effectiveness of Social Path Using the Space Syntax Technique (Space syntax 기법을 활용한 Social Path 효과분석)

  • Choi, Sung Taek;Lee, Hyang Sook;Choo, Sang Ho;Jang, Jin Young;Kim, Su Jae
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.192-203
    • /
    • 2015
  • Pedestrians not only walk along pedestrian pathways, but also choose unusual routes such as passing through buildings or crossing large scale open spaces. This study defines these unusual paths as social path, and includes them into one of the pedestrian road categories. Previous pedestrian accessibility and route choice studies could not evaluate correctly the space connectivity or optimal route because the social path was not considered properly. Therefore, this study analyzes the effectiveness of the social path in view of space connectivity focused on Coex and Seoul stations in Seoul, which are representative transit oriented development(TOD) areas. Global integration, which is widely used in network analysis, is selected (as performance index) to identify the space hierarchy and define new pedestrian links. The study results show that the network connectivity is improved especially in the main streets and social paths. This study demonstrated that the social path should be considered in finding the pedestrian optimal route from the practical perspective.

Collision-Free Path Planning of Articulated Robot using Configuration Space (형상 공간을 이용한 다관절 로보트의 충돌 회피 경로 계획)

  • Kim, J.H.;Choi, J.S.;Kang, H.Y.;Kim, Dong-Won;Yang, S.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.57-65
    • /
    • 1994
  • A collision-free path planning algorithm between an articulated robot and polyhedral obstacles using configuration space is presented. In configuration space, a robot is treated as a point and obstacles are treated as grown forbidden regions. Hence path planning problem is transformed into moving a point from start position to goal position without entering forbidden regions. For mapping to 3D joint space, slice projection method is used for first revolute joint and inverse kinematics is used for second and third revolute joint considering kinematic characteristics of industrial robot. Also, three projected 2D joint spaces are used in search of collision-free path. A proper example is provided to illustrate the proposed algorithm.

  • PDF

Motion Planning of the Car-like Vehicle in the Parking Space by the Motion Space (M-Space를 이용한 자동 주차를 위한 주차 경로 생성)

  • Kim, Dal-Hyung;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Automatic parking assist system is one of the key technologies of the future automobiles. Control problem of a car-like vehicle is not easy due to the nonholonomic constraints. In this paper, a practical solution for planning a car-parking path is proposed according to the proposed motion space (M-space) approach. The M-space is the extension of the conventional configuration space (C-space). A collision-free, nonholonomic feasible path can be directly computed by the M-space conversion and a back-propagation of reachable regions from the goal. The proposed planning scheme provide not a single solution, but also a candidate solution set, therefore, optimization of the parking path can be easily carried out with respect to performance criteria such as safety, maneuvering, and so on. Presented simulation results clearly show that the proposed scheme provides various practical solutions.

  • PDF