• Title/Summary/Keyword: Patch-clamp techniques

Search Result 44, Processing Time 0.02 seconds

Functional Expression of TRPV 4 Cation Channels in Human Mast Cell Line (HMC-1)

  • Kim, Kyung-Soo;Shin, Dong-Hoon;Nam, Joo-Hyun;Park, Kyung-Sun;Zhang, Yin-Hua;Kim, Woo-Kyung;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.419-425
    • /
    • 2010
  • Mast cells are activated by specific allergens and also by various nonspecific stimuli, which might induce physical urticaria. This study investigated the functional expression of temperature sensitive transient receptor potential vanilloid (TRPV) subfamily in the human mast cell line (HMC-1) using whole-cell patch clamp techniques. The temperature of perfusate was raised from room temperature (RT, $23{\sim}25^{\circ}C$) to a moderately high temperature (MHT, $37{\sim}39^{\circ}C$) to activate TRPV3/4, a high temperature (HT, $44{\sim}46^{\circ}C$) to activate TRPV1, or a very high temperature (VHT, $53{\sim}55^{\circ}C$) to activate TRPV2. The membrane conductance of HMC-1 was increased by MHT and HT in about 50% (21 of 40) of the tested cells, and the I/V curves showed weak outward rectification. VHT-induced current was 10-fold larger than those induced by MHT and HT. The application of the TRPV 4 activator $3{\alpha}$-phorbol 12,13-didecanoate ($4{\alpha}$ PDD, $1\;{\mu}M$) induced weakly outward rectifying currents similar to those induced by MHT. However, the TRPV3 agonist camphor or TRPV1 agonist capsaicin had no effect. RT-PCR analysis of HMC-1 demonstrated the expression of TRPV4 as well as potent expression of TRPV2. The $[Ca^{2+}]_c$ of HMC-1 cells was also increased by MHT or by $4{\alpha}$ PDD. In summary, our present study indicates that HMC-1 cells express $Ca^{2+}$-permeable TRPV4 channels in addition to the previously reported expression of TRPV2 with a higher threshold of activating temperature.

Four Voltage-Gated Potassium Currents in Trigeminal Root Ganglion Neurons

  • Choi, Seung Ho;Youn, Chang;Park, Ji-Il;Jeong, Soon-Yeon;Oh, Won-Man;Jung, Ji-Yeon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • Various voltage-gated $K^+$ currents were recently described in dorsal root ganglion (DRG) neurons. However, the characterization and diversity of voltage-gated $K^+$ currents have not been well studied in trigeminal root ganglion (TRG) neurons, which are similar to the DRG neurons in terms of physiological roles and anatomy. This study was aimed to investigate the characteristics and diversity of voltage-gated $K^+$ currents in acutely isolated TRG neurons of rat using whole cell patch clamp techniques. The first type (type I) had a rapid, transient outward current ($I_A$) with the largest current size having a slow inactivation rate and a sustained delayed rectifier outward current ($I_K$) that was small in size having a fast inactivation rate. The $I_A$ currents of this type were mostly blocked by TEA and 4-AP, K channel blockers whereas the $I_K$ current was inhibited by TEA but not by 4-AP. The second type had a large $I_A$ current with a slow inactivation rate and a medium size-sustained delayed $I_K$ current with a slow inactivation rate. In this second type (type II), the sensitivities of the $I_A$ or $I_K$ current by TEA and 4-AP were similar to those of the type I. The third type (type III) had a medium sized $I_A$ current with a fast inactivation rate and a large sustained $I_K$ current with the slow inactivation rate. In type III current, TEA decreased both $I_A$ and $I_K$ but 4-AP only blocked $I_A$ current. The fourth type (type IV) had a smallest $I_A$ with a fast inactivation rate and a large $I_K$ current with a slow inactivation rate. TEA or 4-AP similarly decreased the $I_A$ but the $I_K$ was only blocked by 4-AP. These findings suggest that at least four different voltage-gated $K^+$ currents in biophysical and pharmacological properties exist in the TRG neurons of rats.

Fluoxetine Modulates Corticostriatal Synaptic Transmission through Postsynaptic Mechanism

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Cho, Young-Jin;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Fluoxetine, widely used for the treatment of depression, is known to be a selective serotonin reuptake inhibitor (SSRI), however, there are also reports that fluoxetine has direct effects on several receptors. Employing whole-cell patch clamp techniques in rat brain slice, we studied the effects of fluoxetine on corticostriatal synaptic transmission by measuring the change in spontaneous excitatory postsynaptic currents (sEPSC). Acute treatment of rat brain slice with fluoxetine ($10{\mu}M$) significantly decreased the amplitude of sEPSC ($8.1{\pm}3.3$%, n=7), but did not alter its frequency ($99.1{\pm}4.7$%, n=7). Serotonin ($10{\mu}M$) also significantly decreased the amplitude ($81.2{\pm}3.9$%, n=4) of sEPSC, but did not affect its frequency ($105.8{\pm}8.0$, n=4). The effect of fluoxetine was found to have the same trend as that of serotonin. We also found that the inhibitory effect of fluoxetine on sEPSC amplitude ($93.0{\pm}1.9$%, n=8) was significantly blocked, but not serotonin ($84.3{\pm}1.6$%, n=4), when the brain slice was incubated with p-chloroamphetamine ($10{\mu}M$), which depletes serotonin from the axon terminals and blocks its reuptake. These results suggest that fluoxetine inhibits corticostriatal synaptic transmission through postsynaptic, and that these effects are exerted through both serotonin dependent and independent mechanism.

New in vitro multiple cardiac ion channel screening system for preclinical Torsades de Pointes risk prediction under the Comprehensive in vitro Proarrhythmia Assay concepta

  • Jin Ryeol An;Seo-Yeong Mun;In Kyo Jung;Kwan Soo Kim;Chan Hyeok Kwon;Sun Ok Choi;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.267-275
    • /
    • 2023
  • Cardiotoxicity, particularly drug-induced Torsades de Pointes (TdP), is a concern in drug safety assessment. The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (human iPSC-CMs) has become an attractive human-based platform for predicting cardiotoxicity. Moreover, electrophysiological assessment of multiple cardiac ion channel blocks is emerging as an important parameter to recapitulate proarrhythmic cardiotoxicity. Therefore, we aimed to establish a novel in vitro multiple cardiac ion channel screening-based method using human iPSC-CMs to predict the drug-induced arrhythmogenic risk. To explain the cellular mechanisms underlying the cardiotoxicity of three representative TdP high- (sotalol), intermediate- (chlorpromazine), and low-risk (mexiletine) drugs, and their effects on the cardiac action potential (AP) waveform and voltage-gated ion channels were explored using human iPSC-CMs. In a proof-of-principle experiment, we investigated the effects of cardioactive channel inhibitors on the electrophysiological profile of human iPSC-CMs before evaluating the cardiotoxicity of these drugs. In human iPSC-CMs, sotalol prolonged the AP duration and reduced the total amplitude (TA) via selective inhibition of IKr and INa currents, which are associated with an increased risk of ventricular tachycardia TdP. In contrast, chlorpromazine did not affect the TA; however, it slightly increased AP duration via balanced inhibition of IKr and ICa currents. Moreover, mexiletine did not affect the TA, yet slightly reduced the AP duration via dominant inhibition of ICa currents, which are associated with a decreased risk of ventricular tachycardia TdP. Based on these results, we suggest that human iPSC-CMs can be extended to other preclinical protocols and can supplement drug safety assessments.