• Title/Summary/Keyword: Password Authenticated Key Exchange

Search Result 46, Processing Time 0.024 seconds

Authenticated Key Exchange Protocol for the Secure and Efficient (안전하고 효율적으로 인증된 키 교환 프로토콜)

  • Park, Jong-Min;Park, Byung-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1843-1848
    • /
    • 2010
  • The Key exchange protocols are very crucial tools to provide the secure communication in the broadband satellite access network. They should be required to satisfy various requirements such as security, Key confirmation, and Key freshness. In this paper, we propose Two authenticated key exchange protocols Two Pass EKE-E(Encrypted Key Exchange-Efficient) and Two Pass EKE-S(Encrypted Key Exchange-Secure) are introduced. A basic idea of the protocols is that a password can be represented by modular addition N, and the number of possible modular addition N representing the password is $2^N$ The Two Pass EKE-E is secure against the attacks including main-in-the-middle attack and off-line dictionary attack, and the performance is excellent so as beyond to comparison with other authenticated key exchange protocols. The Two Pass EKE-S is a slight modification of the Two Pass EKE-E. The Two Pass EKE-S provides computational in feasibility for learning the password without having performed off line dictionary attack while preserving the performance of the Two Pass EKE-E.

Efficient Password-based Group Key Exchange Protocol (효율적인 패스워드 기반 그룹 키 교환 프로토콜)

  • 황정연;최규영;이동훈;백종명
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.59-69
    • /
    • 2004
  • Password-based authenticated group key exchange protocols provide a group of user, communicating over a public(insecure) channel and holding a common human-memorable password, with a session key to be used to construct secure multicast sessions for data integrity and confidentiality. In this paper, we present a password-based authenticated group key exchange protocol and prove the security in the random oracle model and the ideal cipher model under the intractability of the decisional Diffie-Hellman(DH) problem and computational DH problem. The protocol is scalable, i.e. constant round and with O(1) exponentiations per user, and provides forward secrecy.

On the Security of Pointcheval-Zimmer Multi-Factor Authenticated Key Exchange Protocol (Pointcheval-Zimmer 다중 인증 요소 기반 인증된 키 교환 프로토콜의 안전성 연구)

  • Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.351-358
    • /
    • 2013
  • In 2008, Pointcheval and Zimmer have presented multi-factor authenticated key exchange protocol with client's secret key, password, biometrics. However, it has been found to be flawed by Hao and Clarke if an attacker has single authentication factor (password), then the attacker can deduce other authentication factors. Interestingly, its countermeasure has not been presented due to the difficulty of design and structural problem. In this paper, an efficient countermeasure is briefly presented and its security is discussed as well.

Remark on the Security of Password Schemes (패스워드 인증 키교환 프로토콜의 안전성에 관한 고찰)

  • 이희정
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.161-168
    • /
    • 2003
  • We discuss the security of two famous password authenticated key exchange protocols, EKE2 and PAK. We introduce ′insider assisted attack′ Based on this assumption we point out weakness of the security of EKE2 and PAK protocols. More precisely, when the legitimate user wants to find other user′s password, called "insider-assisted attacker", the attacker can find out many ephemeral secrets of the server and then after monitoring on line other legitimate user and snatching some messages, he can guess a valid password of the user using the previous information. Of course for this kind of attack there are some constraints. Here we present a full description of the attack and point out that on the formal model, one should be very careful in describing the adversary′s behavior.

The Distributed Authentication and Key Exchange Protocols for Smartcard (스마트카드에 적용가능한 분산형 인증 및 키 교환 프로토콜)

  • Oh Heung-Ryongl;Yoon Ho-Sun;Youm Heung-Youl
    • Journal of Internet Computing and Services
    • /
    • v.6 no.3
    • /
    • pp.17-30
    • /
    • 2005
  • A PAK(Password-Authenticated Key Exchange) protocol is used as a protocol to provide both the mutual authentication and allow the communication entities to share the session key for the subsequent secure communication, using the human-memorable portable short-length password, In this paper, we propose distributed key exchange protocols applicable to a smartcard using the MTI(Matsumoto, Takashima, Imai) key distribution protocol and PAK protocol. If only one server keeps the password verification data which is used for password authentication protocol. then It could easily be compromised by an attacker, called the server-compromised attack, which results in impersonating either a user or a server, Therefore, these password verification data should be distributed among the many server using the secret sharing scheme, The Object of this paper Is to present a password-based key exchange protocol which is to allow user authentication and session key distribution, using the private key in a smartcard and a password typed by a user. Moreover, to avoid the server-compromised attack, we propose the distributee key exchange protocols using the MTI key distribution protocol, And we present the security analysis of the proposed key exchange protocol and compare the proposed protocols with the existing protocols.

  • PDF

Cryptanalysis on a Three Party Key Exchange Protocol-STPKE'

  • Tallapally, Shirisha;Padmavathy, R.
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.43-52
    • /
    • 2010
  • In the secure communication areas, three-party authenticated key exchange protocol is an important cryptographic technique. In this protocol, two clients will share a human-memorable password with a trusted server, in which two users can generate a secure session key. On the other hand the protocol should resist all types of password guessing attacks. Recently, STPKE' protocol has been proposed by Kim and Choi. An undetectable online password guessing attack on STPKE' protocol is presented in the current study. An alternative protocol to overcome undetectable online password guessing attacks is proposed. The results show that the proposed protocol can resist undetectable online password guessing attacks. Additionally, it achieves the same security level with reduced random numbers and without XOR operations. The computational efficiency is improved by $\approx$ 30% for problems of size $\approx$ 2048 bits. The proposed protocol is achieving better performance efficiency and withstands password guessing attacks. The results show that the proposed protocol is secure, efficient and practical.

Multi-Server Authenticated Key Exchange Protocol (다중서버를 이용한 인증된 키교환 프로토콜)

  • 이정현;김현정;이동훈
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.87-97
    • /
    • 2003
  • In this paper, we define two security concepts, “non-computable security” and “distribution security”, about authentication information committed to a authentication server without any trustee, and propose an authenticatied key exchange protocol based on password, satisfying “distribution security”. We call it MAP(Muti-Server Authentication Protocol based on Password) and show that SSSO(Secure Single Sign On) using MAP solves a problem of SSO(Single Sign On) using authentication protocol based on password with a trustee.

Efficient Three-Party Password Authenticated Key Exchange for Client-to-Client Applications

  • Yang, Yanjiang;Bao, Feng
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.249-257
    • /
    • 2008
  • Nowadays, client-to-client applications such as online chat (e.g. MSN) and SMS (Short Message Services) are becoming increasingly prevalent. These client-to-client applications are revolutionizing the way we communicate. Three-party PAKE (password authenticated key exchange) protocols provide a means for the two communicating parties holding passwords to establishment a secure channel between them with the help of a common server. In this paper, we propose an efficient three-party PAKE protocol for the client-to-client applications, which has much better performance than the existing generic constructions. We also show that the proposed protocol is secure in a formal security model.

Security Proof for a Leakage-Resilient Authenticated Key Establishment Protocol

  • Shin, Seong-Han;Kazukuni Kobara;Hideki Imai
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.75-90
    • /
    • 2004
  • At Asiacrypt 2003, Shin et al., have proposed a new class for Authenticated Key Establishment (AKE) protocol named Leakage-Resilient AKE ${(LR-AKE)}^{[1]}$. The authenticity of LR-AKE is based on a user's password and his/her stored secrets in both client side and server side. In their LR-AKE protocol, no TRM(Tamper Resistant Modules) is required and leakage of the stored secrets from $.$my side does not reveal my critical information on the password. This property is useful when the following situation is considered :(1) Stored secrets may leak out ;(2) A user communicates with a lot of servers ;(3) A user remembers only one password. The other AKE protocols, such as SSL/TLS and SSH (based or PKI), Password-Authenticated Key Exchange (PAKE) and Threshold-PAKE (T-PAKE), do not satisfy that property under the above-mentioned situation since their stored secrets (or, verification data on password) in either the client or the servers contain enough information to succeed in retrieving the relatively short password with off-line exhaustive search. As of now, the LR-AKE protocol is the currently horn solution. In this paper, we prove its security of the LR-AKE protocol in the standard model. Our security analysis shows that the LR-AKE Protocol is provably secure under the assumptions that DDH (Decisional Diffie-Hellman) problem is hard and MACs are selectively unforgeable against partially chosen message attacks (which is a weaker notion than being existentially unforgeable against chosen message attacks).

Practical Password-Authenticated Three-Party Key Exchange

  • Kwon, Jeong-Ok;Jeong, Ik-Rae;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.312-332
    • /
    • 2008
  • Password-based authentication key exchange (PAKE) protocols in the literature typically assume a password that is shared between a client and a server. PAKE has been applied in various environments, especially in the “client-server” applications of remotely accessed systems, such as e-banking. With the rapid developments in modern communication environments, such as ad-hoc networks and ubiquitous computing, it is customary to construct a secure peer-to-peer channel, which is quite a different paradigm from existing paradigms. In such a peer-to-peer channel, it would be much more common for users to not share a password with others. In this paper, we consider password-based authentication key exchange in the three-party setting, where two users do not share a password between themselves but only with one server. The users make a session-key by using their different passwords with the help of the server. We propose an efficient password-based authentication key exchange protocol with different passwords that achieves forward secrecy in the standard model. The protocol requires parties to only memorize human-memorable passwords; all other information that is necessary to run the protocol is made public. The protocol is also light-weighted, i.e., it requires only three rounds and four modular exponentiations per user. In fact, this amount of computation and the number of rounds are comparable to the most efficient password-based authentication key exchange protocol in the random-oracle model. The dispensation of random oracles in the protocol does not require the security of any expensive signature schemes or zero-knowlegde proofs.