• Title/Summary/Keyword: Passivity behavior

Search Result 33, Processing Time 0.025 seconds

Effect of Arsenic, Antimony, Bismuth and Lead on Passivation Behavior of Copper Anode (As, Sb, Bi, Pb가 조동의 부동태에 미치는 영향)

  • Ahana, Sung-Chen;Lee, Sang-Mun;Kim, Yong-Hwan;Chung, Won-Sub;Chung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.215-222
    • /
    • 2006
  • The passivity behavior of copper anode containing impurities in copper sulfate solution for electrorefining process was studied at several different levels of impurities such as As, Sb, Bi and Pb. The passivity behavior was investigated by electrochemical techniques (galvanostatic, potentiodynamic and cyclic voltammetry tests) and surface analysis (optical microscopy, electron probe microanalysis, scanning electron microscopy). The results were that arsenic, antimony inhibited passivation and bismuth accelerated it and lead containing anode showed different passivity behavior from above anodes. The improved passivity characteristics could be explained by decrease in oxygen content in passivity film which resulted from a reaction among the impurities, oxygen and copper in the anode. The SEM image revealed that arsenic or antimony containing anode exhibited a porous passivity film and bismuth containing anode showed the compact passivity film and lead containing anode had loose passivity film on anode.

Removing the Noisy Behavior of the Time Domain Passivity Controller (시간영역 수동제어기의 미세떨림현상 제거)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.380-388
    • /
    • 2006
  • A noisy behavior of the time domain passivity controller during the period of low velocity is analyzed. Main reasons of the noisy behavior are investigated through a simulation with a one-DOF (Degree of Freedom) haptic interface model. It is shown that the PO/PC is ineffective in dissipating the produced energy when the sign of the velocity, which is numerically calculated from the measured position, is suddenly changed, and when this velocity is zero. These cases happen during the period of low velocity due to the limited resolution of the position sensor. New methods, ignoring the produced energy from the velocity sign change, and holding the control force while the velocity is zero, are proposed for removing the noisy behavior. The feasibility of the developed methods is proved with both a simulation and a real experiment.

Passivity Problem of Micro-Teleoperation Handling a Insignificant Inertial Object.

  • Park, Kyongho;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.32.5-32
    • /
    • 2001
  • There has been many teleoperation systems handling the micro object. However, the stability problem for these systems has not been mentioned yet. Historically, Lawrence[1] proposed the Transparency-Optimized Architecture and passivity theorem for stability analysis of bilateral teleoperation. He claimed that unless the task(or environment) impedance contains significance inertial behavior, Passivity condition for Transparency-optimized architecture is not satisfied. In this paper we propose one method which satisfies passivity condition for the micro-teleoperation system handling a insignificant inertial object and is based on the structure of Lawrence and Hashtrudi-Zaad[2] and velocity-force scaling.

  • PDF

Bilateral Control with Time Domain Passivity Approach under Time-varying Communication Delay: Resetting Scheme (시간영역 수동성 기법을 이용하여 시변 시간지연 하에서 안정성을 보장하는 양방향 원격제어기: 리셋 방법)

  • Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1124-1129
    • /
    • 2008
  • Recently, two-port time-domain passivity approach was modified for time-varying communication delay. The newly proposed approach could achieve stable teleoperation even under the serious time-varying delay and packet loss communication condition. However, after some operation hour, the accumulated energy difference between the input energy from one port and the output energy at the other port caused unstable behavior until the passivity controller is activated. Resetting scheme is introduced for solving this problem, and stable bilateral teleoperation can be guaranteed without worrying about the accumulated energy difference.

Directionally Transparent Energy Bounding Approach for Multiple Degree-of-Freedom Haptic Interaction

  • Kim, Jae-Ha;Kim, Jong-Phil;Seo, Chang-Hoon;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2068-2071
    • /
    • 2009
  • This paper presents a multiple degree-of-freedom (dof) energy bounding approach (EBA) to enhance directional transparency while guaranteeing stability for multiple-dof haptic interaction. It was observed that the passivity condition for multiple ports may lead to some oscillatory limit cycle behaviors in some coordinate directions even though the total sum of energy flow-in is positive, meaning that the system is passive. The passivity condition, therefore, needs to be applied to each coordinate in order to avoid oscillatory behavior by keeping each energy flow-in always positive. For guaranteeing passivity, which in turn, stability in each coordinates, the EBA is applied. For multiple-dof haptic interaction, however, the EBA in each coordinate may distort the direction of the force vector to be rendered since the EBA may cut down the magnitude of the force and torque vectors to be rendered in order to ensure the passivity. For avoiding this problem, a simple projection method is presented. The validity of the proposed algorithm is shown by several experiments.

  • PDF

Stable Haptic Interaction with Reference Energy Following Scheme (에너지 추종방법을 이용한 안정적 햅틱 상호작용)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2006
  • A recently proposed method for stabilizing haptic interfaces and teleoperation systems was tested with a 'PHANToM' commercial haptic device. The 'Passivity Observer' (PO) and 'Passivity Control1er' (PC) stabilization method was applied to stabilize the system but also excited a high frequency mode in the device. To solve this problem, we propose a method to use a timevarying desired energy threshold instead of fixed zero energy threshold for the PO, and make the actual energy input follow the timevarying energy threshold. With the time-varying energy threshold, we make the PC control action smooth without sudden impulsive behavior by distributing the dissipation. The proposed new PO/PC approach is applied to PHANToM with high stiffness (K = 5000N/m), and stable and smooth contact is guaranteed. Resetting and active environment display problems also can be solved with the reference energy following idea.

Comparative Study of Passivity and RST Regulator Applied to Doubly Fed Induction Machine

  • Aissi, S.;Saidi, L.;Abdessemed, R.;Ababsa, F.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.521-526
    • /
    • 2009
  • In this paper we are interested in the control of Doubly Fed Induction Machine (DFIM) using the Passivity Based Control (PBC). This work presents a solution to the problem of DFIM that requires a state observer. The proposed method shows very important advantages for nonlinear systems, especially in the trajectory tracking to achieve the needed DFIM performance. In the obtained results, the passivity provides high efficiency in DFIM based system, namely in its stability and robustness. An improvement behavior has been observed in comparison to the results given by the RST controller.

Passivity Control of a Passive Haptic Device based on Passive FME Analysis

  • Cho, Chang-Hyun;Kim, Beom-Seop;Kim, Mun-Sang;Song, Jae-Bok;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1559-1564
    • /
    • 2003
  • In this paper, a control method is presented to improve performance of haptic display on a passive haptic device equipped with passive actuators. In displaying a virtual wall with the passive haptic device, an unstable behavior occurs with excessive actions of brakes due to the time delay mainly arising from the update rate of the virtual environment and force approximation originated from the characteristics of the passive actuators. The previous T.D.P.C. (Time Domain Passivity Control) method was not suitable for the passive haptic device, since a programmable damper used in the previously introduced T.D.P.C. method easily leads to undesirable behaviors. A new passivity control method is evaluated with considering characteristics of the passive device. First, we propose a control method which is designed under the analysis of the passive FME (Force Manipulability Ellipsoid). And then a passivity control scheme is applied to the proposed control method. Various experiments have been conducted to verify the proposed method with a 2-link mechanism.

  • PDF

Development of robust flocking control law for multiple UAVs using behavioral decentralized method (다수 무인기의 행위 기반 강인 군집비행 제어법칙 설계)

  • Shin, Jongho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.859-867
    • /
    • 2015
  • This study proposes a robust formation flight control technique of multiple unmanned aerial vehicles(UAVs) using behavior-based decentralized approach. The behavior-based decentralized method has various advantages because it utilizes information of neighboring UAVs only instead of information of whole UAVs in the formation maneuvering. The controllers in this paper are divided into two methods: first one is based on position and velocity of neighboring UAVs, and the other one is based on position of neighboring UAVs and passivity technique. The proposed controllers assure uniformly ultimate boundedness of closed-loops system under time varying bounded disturbances. Numerical simulations are performed to validate the effectiveness of the proposed method.

Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control

  • Alaimo, Andrea;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.459-473
    • /
    • 2020
  • The aircraft nose landing gear (NLG) can suffer of an unstable vibration called shimmy that is responsible of discomfort and of fatigue stress on the gear strut components. An adaptive controller is proposed in this paper to cope with the aforementioned problem. It is based on a method called Modified Simple Adaptive control (MSAC) which is able of governing the NLG motion by using a feedback signal that relies on just one output of the plant. The MSAC only asks for the passivity of the controlled plant. With this aim, a parallel feedforward compensator is employed in this work to let the system satisfies the almost strictly passivity (ASP) requirements. The nonlinear equations that govern the aircraft NLG shimmy vibration behavior are used to analyzed the controlled system transient response undergoing an initial disturbance and taking into account different taxiing speed values.