• Title/Summary/Keyword: Passivity Technique

Search Result 16, Processing Time 0.026 seconds

A Stabilizing Control technique for Bilateral Teleoperation System with Time delay using Adjustable Characteristic Impedance of wave Variable (웨이브 변수의 가변 특성 임피던스를 이용한 시간지연을 갖는 양 방향 원격조작시스템의 안정화 제어 방법)

  • 김형욱;김종복;서일홍;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.600-609
    • /
    • 2003
  • A hybrid stabilization approach involving both Passivity Observer/passivity Controller and wave variables is addressed to stabilize the teleoperation system with time delay. To guarantee the stability of master or slave side, Passivity Observer and Passivity Controller are applied. But Passivity Observer and Passivity Controller technique cannot deal with communication delay and even small communication delay cause the system to be unstable. To cope with this problem, wave variables are additionally employed to have robustness to arbitrary delays. To show the validity of our proposed approach, several computer simulation results are illustrated.

A stabilizing control technique for bilateral teleoperation system with time delay

  • Kim, H.W.;Suh, I.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.336-341
    • /
    • 2004
  • In this paper, a hybrid stabilization approach involving both passivity observer/passivity controller and wave variables is addressed to stabilize a teleoperation system with fixed time delay. To guarantee the stability of master or slave side, passivity observer/passivity controller are applied. But, passivity observer/passivity controller cannot deal with communication delay, and thus even small communication delay cause the system to be unstable. To cope with this problem, wave variables are additionally employed to have robustness to fixed communication delays. To show the validity of our proposed approach, several computer simulation results are illustrated.

  • PDF

Development of robust flocking control law for multiple UAVs using behavioral decentralized method (다수 무인기의 행위 기반 강인 군집비행 제어법칙 설계)

  • Shin, Jongho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.859-867
    • /
    • 2015
  • This study proposes a robust formation flight control technique of multiple unmanned aerial vehicles(UAVs) using behavior-based decentralized approach. The behavior-based decentralized method has various advantages because it utilizes information of neighboring UAVs only instead of information of whole UAVs in the formation maneuvering. The controllers in this paper are divided into two methods: first one is based on position and velocity of neighboring UAVs, and the other one is based on position of neighboring UAVs and passivity technique. The proposed controllers assure uniformly ultimate boundedness of closed-loops system under time varying bounded disturbances. Numerical simulations are performed to validate the effectiveness of the proposed method.

Passivity Based Adaptive Control and Its Optimization for Upper Limb Assist Exoskeleton Robot (상지 근력 보조용 착용형 외골격 로봇의 수동성 기반 적응 제어와 최적화 기법)

  • Khan, Abdul Manan;Ji, Young Hoon;Ali, Mian Ashfaq;Han, Jung Soo;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.857-863
    • /
    • 2015
  • The need for human body posture robots has led researchers to develop dexterous design of exoskeleton robots. Quantitative techniques to assess human motor function and generate commands for robots were required to be developed. In this paper, we present a passivity based adaptive control algorithm for upper limb assist exoskeleton. The proposed algorithm can adapt to different subject parameters and provide efficient response against the biomechanical variations caused by subject variations. Furthermore, we have employed the Particle Swarm Optimization technique to tune the controller gains. Efficacy of the proposed algorithm method is experimentally demonstrated using a seven degree of freedom upper limb assist exoskeleton robot. The proposed algorithm was found to estimate the desired motion and assist accordingly. This algorithm in conjunction with an upper limb assist exoskeleton robot may be very useful for elderly people to perform daily tasks.

Robust Passive Low-order Filtering for Discrete-time Uncertain Descriptor Systems (이산시간 불확실 특이시스템의 저차 강인 피동성 필터링)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.466-471
    • /
    • 2012
  • In this paper, we consider the problem of a robust passive filtering with low-order for discrete-time singular systems with polytopic uncertainties. A BRL(bounded real lemma) for robust passivity with a dissipativity of discrete-time uncertain singular systems is derived. A low-order robust passive filter design method is proposed by new reduced-order method and LMI(linear matrix inequality) technique on the basis of the obtained BRL. Finally, illustrative examples are presented to show the applicability of the proposed method.

Studies on the influence of zinc oxide as an inhibitor for the corrosion of mild steel in simulated concrete environments (콘크리트 환경에서 ZnO의 철근 부식 억제에 관한 연구)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Lee, Hyun-Goo;Kim, Dae-Kyeong;Ha, Yoon-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1873-1875
    • /
    • 2005
  • The effect of zinc oxide as an inhibitor for the corrosion of steel in concrete environment was studied by weight loss measurements, potential-time behaviour and anodic polarization technique. The salient features of the investigation were: in 100% OPC extracts, the passivity of steel was readily destroyed, however extracts containing various concentration of zinc oxide, the passivity of steel was maintained even in the presence of 30,000 ppm of chloride. Alkalinity of concrete was maintained by the addition of zinc oxide. The efficiency of the inhibitor was found to increase with increasing inhibitor concentration. Addition of zinc oxide in the range 3 to 4% by weight of cement was sufficient to protect the rebars.

  • PDF

Robust Nonlinear Control of AC Brushless Motor for Electric Vehicles Application

  • Langarica-Cordoba, Diego;Guerrero-Ramirez, Gerardo V.;Claudio-Sanchez, Abraham;Duran-Fonseca, Miguel A.;Adam-Medina, Manuel;Astorga-Zaragoza, Carlos-Manuel
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.430-438
    • /
    • 2011
  • This article proposes a robust nonlinear control based on Lyapunov's redesign, whose purpose is to deal with parametric uncertainty in the resistance of the motor windings. The robust controller design is based on the passivity properties of the motor, as well as energy shaping and damping injection. The application of this control technique is focused on electric vehicles mainly formed by a battery bank, a power inverter, an AC brushless motor and the mechanical transmission. The sine PWM technique is used to trigger the switching devices of inverter. The results were obtained from simulation, where is shown that robust control makes a proper tracking of electromagnetic torque.

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.

A Study on the Design of Adaptive Nonlinear Controller using Backstepping Technique (백스테핑 기법을 이용한 적응 비선형 제어기 설계에 관한 연구)

  • Kim, Min-Soo;Hyun, Keun-Ho;Lee, Hyung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.588-591
    • /
    • 1998
  • In this paper, we present a robust adaptive backstepping output feedback controller for nonlinear systems perturbed by unmodelled dynamics and disturbances. Especially, backstepping technique with modular approach is used to separately design controller and identifier. The design of identifier is based on the observer-based scheme which possesses a strict passivity property of observer error system. We will use Switching-${\sigma}$ modification at the update law and the modified control law to attenuate the effects of undodelled dynamics and disturbances for nonlinear systems.

  • PDF