• Title/Summary/Keyword: Passive work

Search Result 377, Processing Time 0.023 seconds

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S.;Sun, D.B.;Yu, H.Y.;Meng, H.M.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.261-266
    • /
    • 2015
  • The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

An Experiment of Natural Circulated Air Flow and Heat Transfer in the Passive Containment Cooling System (격납용기 피동냉각계통내 자연순환 공기유량 및 열전달 실험연구)

  • Ryu, S.H.;Oh, S.M.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.516-525
    • /
    • 1994
  • Since the TMI and Chernobyl accidents, many passive safety features are suggested in advanced reactors in order to enhance the safety in future nuclear power plants. In order to verify the effectiveness and provide the data for detailed design of passive cooling system, in the present work, the effects of air inlet position and external condition on the natural circulated air flow rate and the natural and forced convective heat transfer coefficient have been investigated for the one-side heated closed path such as the passive containment cooling system of the Westinghouse's AP-600. A series of experiments have been peformed with the 1/26th scaled segment type test facility of the AP-600 passive containment. Under natural and forced convection, the air velocities and temperatures are measured at several points of the air flow path. The experimental result are compared with a simple one-dimensional model and it shows a good agreement.

  • PDF

Levodopa Transport through Skin using Iontophoresis: the Role of Electroosmosis and Electrorepulsion (이온토포레시스를 이용한 levodopa의 경피전달: electroosmosis 및 electrorepulsion의 역할)

  • Jung, Shin-Ae;Gwak, Hye-Sun;Chun, In-Koo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • The objective of this work is to study transdermal delivery of levodopa using iontophoresis and evaluate various factors which affect the transdermal transport. Levodopa is unstable in aqueous solution, and, in order to establish a stable condition for levodopa for the duration of experiment, we investigated the stability of levodopa in aqueous solutions of different pHs with/without the addition of dextrose or the application of current. Using stable aqueous solution, we have studied the effect of pH, polarity and penetration enhancer (ethanol) on transdermal flux and compared the results. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin and rat skin were used for this work. Current densities applied were 0.4 or $0.6mA/cm^2$ and current was off after 6 hour application. Stability study showed that levodopa solution with a pH 2.5 or 4.5 maintained the initial concentration of levodopa for 24 hours with the addition of 5% dextrose. However, at pH 9.5, levodopa was unstable and 30 to 40% of levodopa degraded within 24 hours, even with the addition of 5% dextrose. Hydrogel swollen with dextrose added levodopa solution maintained about 97% of the initial concentration of levodopa for 13 days, when stored in $4^{\circ}C$. The application of current did not affect the stability of levodopa in hydrogel. Flux study from levodopa solution with pH 2.5 showed that cathodal delivery of levodopa was higher than passive or anodal delivery. When the pH of the donor solution was 4.5, anodal delivery of levodopa was higher than passive or cathodal delivery. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5, and the reverse situation applies for pH 4.5. The passive flux was unexpectedly high for the ionized levodopa. Similar to the results from aqueous solution, cumulative amount of levodopa transported trom HPC hydrogel by cathodal delivery was significantly higher than passive or anodal delivery. The treatment of 70% ethanol cotton ball by scrubbing increased passive, anodal and cathodal flux, with the largest increase for anodal flux. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules with single charge. The results also indicate that the balance between electroosmosis and electrorepulsion plays a very important role in the transport through skin.

Iontophoretic Transport of Donepezil Hydrochloride through Skin: Flux Enhancement by Chemical Enhancer and Iontophoresis

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.337-345
    • /
    • 2011
  • The objective of this work is to investigate the effect of chemical enhancer and current on the flux of donepezil hydrochloride (DH) through skin. Ethanol and N-methyl pyrrolidone (NMP) were used as chemical enhancers in combination with iontophoresis. We also have studied the effect of pH on flux and evaluated the role of electroosmosis. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Passive flux of DH without enhancer was very small. As the concentration of enhancer increased, passive flux increased. After current application, flux increased markedly and the time to reach maximum decreased. Without enhancer, maximum flux was about 50 fold larger than that obtained without current. These results indicate that electromigration is playing a major role for the transport. As the enhancer concentration increased, flux also increased. NMP and ethanol increased not only the passive delivery, but also the iontophoretic delivery. Flux results indicate that ethanol has better ability than NMP in enhancing the transport of DH. The magnitudes of increase in flux by these enhancers indicate that there is a large synergistic effect in flux enhancement. Flux results from pH study showed that electroosmotic flow is reversed at low pH and the flux is hindered. These results provided some information on the flux enhancing ability of ethanol and NMP in combination with iontophoresis. The data also provided some mechanistic insights into the role of electromigration and electroosmosis on flux through skin.

Application of the PSTAR Method to a Thermally Massive Passive Solar House (PSTAR기법을 이용한 자연형 주택의 열 성능 연구)

  • Jeon, Hong-Seok;Chun, Won-Gee
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 1991
  • This paper reports the application of the PSTAR(Primary and Secondary Terms Analysis and Henormalization) method to a thermally massive passive solar house located in Daejeon, Korea. The house has approximately $156m^2$ of living area with 3 bedrooms and a living room, which embodies many passive solar features for energy conservation. The primary concern of this work was to properly evaluate the thermal behavior of a thermally massive building structure using the PSTAR method. Results show close agreements between the measured and renormalized values in most cases in which the simulation results from the audit description of the house deviate somewhat considerably.

  • PDF

A parametric study on the use of passive fire protection in FPSO topside module

  • Friebe, Martin;Jang, Beom-Seon;Jim, Yanlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.826-839
    • /
    • 2014
  • Fire is a continuous threat to FPSO topside modules as large amounts of oil and gas are passing through the modules. As a conventional measure to mitigate structural failure under fire, passive fire protection (PFP) coatings are widely used on main structural members. However, an excessive use of PFP coatings can cause considerable cost for material purchase, installation, inspection and maintenance. Long installation time can be a risk since the work should be done nearly at the last fabrication stage. Thus, the minimal use of PFP can be beneficial to the reduction of construction cost and the avoidance of schedule delay. This paper presents a few case studies on how different applications of PFP have influence on collapse time of a FPSO module structure. A series of heat analysis and thermal elasto-plastic FE analysis are performed for different PFP coatings and the resultant collapse time and the amount of PFP coatings are compared with each other.

Single-Phase Transformerless Inverter using Passive Bypass Filter (수동 바이패스 필터를 이용한 단상 무변압기형 인버터)

  • Yang, Min-Kwon;Heo, Jun;Lee, Myung-Chul;Kim, Yu-Jin;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.129-138
    • /
    • 2018
  • Previous single-phase transformerless inverters used active bypass switching circuits that need auxiliary power switches to minimize ground leakage current. However, switching and gate driving losses are increased due to the use of additional power switches. To cope with this drawback, this work proposes a transformerless inverter using a passive bypass filter without any auxiliary power switch. The operation and control of the proposed inverter are described. The ground leakage current characteristics are analyzed for the proposed inverter with the passive bypass filter. The experimental results of the proposed inverter for a 1.0kW prototype system are presented.

Refined optimal passive control of buffeting-induced wind loading of a suspension bridge

  • Domaneschi, M.;Martinelli, L.
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2014
  • Modern design of long suspension bridges must satisfy at the same time spanning very long distances and limiting their response against several external loads, even if of high intensity. Structural Control, with the solutions it provides, can offer a reliable contribution to limit internal forces and deformations in structural elements when extreme events occur. This positive aspect is very interesting when the dimensions of the structure are large. Herein, an updated numerical model of an existing suspension bridge is developed in a commercial finite element work frame, starting from original data. This model is used to reevaluate an optimization procedure for a passive control strategy, already proven effective with a simplified model of the buffeting wind forces. Such optimization procedure, previously implemented with a quasi-steady model of the buffeting excitation, is here reevaluated adopting a more refined version of the wind-structure interaction forces in which wind actions are applied on the towers and the cables considering drag forces only. For the deck a more refined formulation, based on the use of indicial functions, is adopted to reflect coupling with the bridge orientation and motion. It is shown that there is no variation of the previously identified optimal passive configuration.

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.

Brightness Temperature Retrieval using Direct Broadcast Data from the Passive Microwave Imager on Aqua Satellite

  • Kim, Seung-Bum;Im, Yong-Jo;Kim, Kum-Lan;Park, Hye-Sook;Park, Sung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • We have constructed a level-1 processor to generate brightness temperatures using the direct-broadcast data from the passive microwave radiometer onboard Aqua satellite. Although 50-minute half-orbit data, called a granule, are being routinely produced by global data centers, to our knowledge, this is the first attempt to process 10-minute long direct-broadcast (DB) data. We found that the processor designed for a granule needs modification to apply to the DB data. The modification includes the correction to path number, the selection of land mask and the manipulation of dummy scans. Pixel-to-pixel comparison with a reference indicates the difference in brightness temperature of about 0.2 K rms and less than 0.05 K mean. The difference comes from the different length of data between 50-minute granule and about 10-minute DB data. In detail, due to the short data length, DB data do not always have correct cold sky mirror count. The DB processing system is automated to enable the near-real time generation of brightness temperatures within 5 minutes after downlink. Through this work, we would be able to enhance the use of AMSR-E data, thus serving the objective of direct-broadcast.